使用Spark,如何连接master或解决错误:“WARN TaskSchedulerImpl:初始作业未接受任何资源”

时间:2014-08-07 07:07:04

标签: python hadoop amazon-ec2 apache-spark

请告诉我如何解决问题。

首先,我确认以下代码在master为" local"时运行。

然后我启动了两个EC2实例(m1.large)。 但是,当master为" spark:// MASTER_PUBLIC_DNS:7077"时,会出现错误消息" TaskSchedulerImpl",并且失败。

当我从VALID地址更改为INVALID地址作为主设备(spark:// INVALID_DNS:7077)时,会出现相同的错误消息。

即" WARN TaskSchedulerImpl:初始作业未接受任何资源;检查您的集群UI以确保工作人员已注册并具有足够的内存"

好像是this。 作为这个评论,我为这个集群分配了12G内存,但它失败了。

#!/usr/bin/env python                                                                                     
# -*- coding: utf-8 -*- 
from pyspark import SparkContext, SparkConf 
from pyspark.mllib.classification import LogisticRegressionWithSGD 
from pyspark.mllib.regression import LabeledPoint 
from numpy import array 

# Load and parse the data 
def parsePoint(line): 
  values = [float(x) for x in line.split(' ')] 
  return LabeledPoint(values[0], values[1:]) 
appName = "testsparkapp" 
master = "spark://MASTER_PUBLIC_DNS:7077" 
#master = "local" 


conf = SparkConf().setAppName(appName).setMaster(master) 
sc = SparkContext(conf=conf) 

data = sc.textFile("/root/spark/mllib/data/sample_svm_data.txt") 
parsedData = data.map(parsePoint) 

# Build the model 
model = LogisticRegressionWithSGD.train(parsedData) 

# Evaluating the model on training data 
labelsAndPreds = parsedData.map(lambda p: (p.label, model.predict(p.features))) 
trainErr = labelsAndPreds.filter(lambda (v, p): v != p).count() / float(parsedData.count()) 
print("Training Error = " + str(trainErr))     

其他

我做了三件我朋友建议我去做的任务。

1.我打开了主端口7077。

2.在主URL中,设置主机名而不是ip地址。

- >因此,我开始能够连接主服务器(我通过群集用户界面检查了它)。

3.我试图设置worker_max_heap,如下所示,但可能失败了。

ScalaConf()。set(" spark.executor.memory"," 4g")。set(" worker_max_heapsize"," 2g&#34 ;)

工作人员允许我使用6.3GB(我通过UI检查)。它是m1.large。

- >我在执行日志中识别出警告,并在工作人员stderr中发现错误。

我的执行日志

14/08/08 06:11:59 WARN TaskSchedulerImpl: Initial job has not accepted any resources; check your cluster UI to ensure that workers are registered and have sufficient memory

worker stderr

14/08/08 06:14:04 INFO worker.WorkerWatcher: Successfully connected to akka.tcp://sparkWorker@PRIVATE_HOST_NAME1:52011/user/Worker
14/08/08 06:15:07 ERROR executor.CoarseGrainedExecutorBackend: Driver Disassociated [akka.tcp://sparkExecutor@PRIVATE_HOST_NAME1:52201] -> [akka.tcp://spark@PRIVATE_HOST_NAME2:38286] disassociated! Shutting down.

1 个答案:

答案 0 :(得分:5)

spark-ec2脚本将EC2中的Spark Cluster配置为独立,这意味着它无法与远程提交一起使用。我已经为你所描述的同样的错误挣扎了几天,然后才发现它不受支持。遗憾的是,邮件错误不正确。

所以你必须复制你的东西并登录主人来执行你的火花任务。