从此处跟进:Converting a 1D array into a 2D class-based matrix in python
我想为我的46个班级绘制ROC曲线。我有300个测试样本,我已经运行了我的分类器来进行预测。
y_test
是真正的类,y_pred
是我的分类器预测的。
这是我的代码:
from sklearn.metrics import confusion_matrix, roc_curve, auc
from sklearn.preprocessing import label_binarize
import numpy as np
y_test_bi = label_binarize(y_test, classes=[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18, 19,20,21,2,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,3,40,41,42,43,44,45])
y_pred_bi = label_binarize(y_pred, classes=[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18, 19,20,21,2,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,3,40,41,42,43,44,45])
# Compute ROC curve and ROC area for each class
fpr = dict()
tpr = dict()
roc_auc = dict()
for i in range(2):
fpr[i], tpr[i], _ = roc_curve(y_test_bi, y_pred_bi)
roc_auc[i] = auc(fpr[i], tpr[i])
但是,现在我收到以下错误:
Traceback (most recent call last):
File "C:\Users\app\Documents\Python Scripts\gbc_classifier_test.py", line 152, in <module>
fpr[i], tpr[i], _ = roc_curve(y_test_bi, y_pred_bi)
File "C:\Users\app\Anaconda\lib\site-packages\sklearn\metrics\metrics.py", line 672, in roc_curve
fps, tps, thresholds = _binary_clf_curve(y_true, y_score, pos_label)
File "C:\Users\app\Anaconda\lib\site-packages\sklearn\metrics\metrics.py", line 505, in _binary_clf_curve
y_true = column_or_1d(y_true)
File "C:\Users\app\Anaconda\lib\site-packages\sklearn\utils\validation.py", line 265, in column_or_1d
raise ValueError("bad input shape {0}".format(shape))
ValueError: bad input shape (300L, 46L)
答案 0 :(得分:3)
roc_curve
采用形状为[n_samples]
(link)的参数,您的输入(y_test_bi
或y_pred_bi
)的形状为(300, 46)
。注意第一个
我认为问题是y_pred_bi
是一组概率,通过调用clf.predict_proba(X)
创建(请确认这一点)。由于您的分类器已经针对所有46个类进行了训练,因此它为每个数据点输出了46维向量,并且label_binarize
无法做到这一点。
我知道有两种解决方法:
label_binarize
之前调用clf.fit()
来训练46 二进制分类器,然后计算ROC曲线roc_curve
。我假设y_pred_bi
包含概率答案 1 :(得分:0)
使用label_binarize
:
import matplotlib.pyplot as plt
from sklearn import svm, datasets
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import label_binarize
from sklearn.metrics import roc_curve, auc
from sklearn.multiclass import OneVsRestClassifier
iris = datasets.load_iris()
X = iris.data
y = iris.target
# Binarize the output
y = label_binarize(y, classes=[0, 1, 2])
n_classes = y.shape[1]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.5, random_state=0)
classifier = OneVsRestClassifier(svm.SVC(kernel='linear', probability=True,
random_state=0))
y_score = classifier.fit(X_train, y_train).decision_function(X_test)
fpr = dict()
tpr = dict()
roc_auc = dict()
for i in range(n_classes):
fpr[i], tpr[i], _ = roc_curve(y_test[:, i], y_score[:, i])
roc_auc[i] = auc(fpr[i], tpr[i])
colors = cycle(['blue', 'red', 'green'])
for i, color in zip(range(n_classes), colors):
plt.plot(fpr[i], tpr[i], color=color, lw=lw,
label='ROC curve of class {0} (area = {1:0.2f})'
''.format(i, roc_auc[i]))
plt.plot([0, 1], [0, 1], 'k--', lw=lw)
plt.xlim([-0.05, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic for multi-class data')
plt.legend(loc="lower right")
plt.show()