下面的代码将从hbase读取,然后将其转换为json结构并转换为schemaRDD,但问题是我using List
存储json字符串然后传递给javaRDD,以获取有关的数据100 GB主机将在内存中加载数据。从hbase加载数据然后执行操作然后转换为JavaRDD的正确方法是什么。
package hbase_reader;
import java.io.IOException;
import java.io.Serializable;
import java.util.ArrayList;
import java.util.List;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.rdd.RDD;
import org.apache.spark.sql.api.java.JavaSQLContext;
import org.apache.spark.sql.api.java.JavaSchemaRDD;
import org.apache.commons.cli.ParseException;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.KeyValue;
import org.apache.hadoop.hbase.client.HTable;
import org.apache.hadoop.hbase.client.Result;
import org.apache.hadoop.hbase.client.ResultScanner;
import org.apache.hadoop.hbase.client.Scan;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.TableInputFormat;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.io.Text;
import org.apache.spark.SparkConf;
import scala.Function1;
import scala.Tuple2;
import scala.runtime.AbstractFunction1;
import com.google.common.collect.Lists;
public class hbase_reader {
public static void main(String[] args) throws IOException, ParseException {
List<String> jars = Lists.newArrayList("");
SparkConf spconf = new SparkConf();
spconf.setMaster("local[2]");
spconf.setAppName("HBase");
//spconf.setSparkHome("/opt/human/opt/spark-0.9.0-hdp1");
spconf.setJars(jars.toArray(new String[jars.size()]));
JavaSparkContext sc = new JavaSparkContext(spconf);
//spconf.set("spark.executor.memory", "1g");
JavaSQLContext jsql = new JavaSQLContext(sc);
HBaseConfiguration conf = new HBaseConfiguration();
String tableName = "HBase.CounData1_Raw_Min1";
HTable table = new HTable(conf,tableName);
try {
ResultScanner scanner = table.getScanner(new Scan());
List<String> jsonList = new ArrayList<String>();
String json = null;
for(Result rowResult:scanner) {
json = "";
String rowKey = Bytes.toString(rowResult.getRow());
for(byte[] s1:rowResult.getMap().keySet()) {
String s1_str = Bytes.toString(s1);
String jsonSame = "";
for(byte[] s2:rowResult.getMap().get(s1).keySet()) {
String s2_str = Bytes.toString(s2);
for(long s3:rowResult.getMap().get(s1).get(s2).keySet()) {
String s3_str = new String(rowResult.getMap().get(s1).get(s2).get(s3));
jsonSame += "\""+s2_str+"\":"+s3_str+",";
}
}
jsonSame = jsonSame.substring(0,jsonSame.length()-1);
json += "\""+s1_str+"\""+":{"+jsonSame+"}"+",";
}
json = json.substring(0,json.length()-1);
json = "{\"RowKey\":\""+rowKey+"\","+json+"}";
jsonList.add(json);
}
JavaRDD<String> jsonRDD = sc.parallelize(jsonList);
JavaSchemaRDD schemaRDD = jsql.jsonRDD(jsonRDD);
System.out.println(schemaRDD.take(2));
} finally {
table.close();
}
}
}
答案 0 :(得分:49)
使用Spark(Scala)读取HBase数据的基本示例,您也可以在Java中使用它:
import org.apache.hadoop.hbase.client.{HBaseAdmin, Result}
import org.apache.hadoop.hbase.{ HBaseConfiguration, HTableDescriptor }
import org.apache.hadoop.hbase.mapreduce.TableInputFormat
import org.apache.hadoop.hbase.io.ImmutableBytesWritable
import org.apache.spark._
object HBaseRead {
def main(args: Array[String]) {
val sparkConf = new SparkConf().setAppName("HBaseRead").setMaster("local[2]")
val sc = new SparkContext(sparkConf)
val conf = HBaseConfiguration.create()
val tableName = "table1"
System.setProperty("user.name", "hdfs")
System.setProperty("HADOOP_USER_NAME", "hdfs")
conf.set("hbase.master", "localhost:60000")
conf.setInt("timeout", 120000)
conf.set("hbase.zookeeper.quorum", "localhost")
conf.set("zookeeper.znode.parent", "/hbase-unsecure")
conf.set(TableInputFormat.INPUT_TABLE, tableName)
val admin = new HBaseAdmin(conf)
if (!admin.isTableAvailable(tableName)) {
val tableDesc = new HTableDescriptor(tableName)
admin.createTable(tableDesc)
}
val hBaseRDD = sc.newAPIHadoopRDD(conf, classOf[TableInputFormat], classOf[ImmutableBytesWritable], classOf[Result])
println("Number of Records found : " + hBaseRDD.count())
sc.stop()
}
}
从Spark 1.0.x +开始,现在您也可以使用Spark-HBase Connector:
Maven依赖包括:
<dependency>
<groupId>it.nerdammer.bigdata</groupId>
<artifactId>spark-hbase-connector_2.10</artifactId>
<version>1.0.3</version> // Version can be changed as per your Spark version, I am using Spark 1.6.x
</dependency>
找到以下示例代码:
import org.apache.spark._
import it.nerdammer.spark.hbase._
object HBaseRead extends App {
val sparkConf = new SparkConf().setAppName("Spark-HBase").setMaster("local[4]")
sparkConf.set("spark.hbase.host", "<YourHostnameOnly>") //e.g. 192.168.1.1 or localhost or your hostanme
val sc = new SparkContext(sparkConf)
// For Example If you have an HBase Table as 'Document' with ColumnFamily 'SMPL' and qualifier as 'DocID, Title' then:
val docRdd = sc.hbaseTable[(Option[String], Option[String])]("Document")
.select("DocID", "Title").inColumnFamily("SMPL")
println("Number of Records found : " + docRdd .count())
}
从Spark 1.6.x +开始,现在您也可以使用SHC Connector(Hortonworks或HDP用户):
Maven依赖包括:
<dependency>
<groupId>com.hortonworks</groupId>
<artifactId>shc</artifactId>
<version>1.0.0-2.0-s_2.11</version> // Version depends on the Spark version and is supported upto Spark 2.x
</dependency>
使用此连接器的主要优点是它在Schema定义中具有灵活性,并且不需要像nerdammer / spark-hbase-connector那样需要Hardcoded params。还要记住它支持Spark 2.x,因此这个连接器非常灵活,可以在问题和PR中提供端到端的支持。
找到最新自述文件和示例的以下存储库路径:
Hortonworks Spark HBase Connector
您还可以将此RDD转换为DataFrame并在其上运行SQL,或者您可以将这些数据集或DataFrame映射到用户定义的Java Pojo或Case类。它很棒。
如果您还有其他需要,请在下方发表评论。
答案 1 :(得分:10)
我更喜欢从hbase读取并在spark中执行json操作 Spark提供JavaSparkContext.newAPIHadoopRDD函数来读取hadoop存储中的数据,包括HBase。您必须在配置参数和表格输入格式中提供HBase配置,表格名称和扫描以及它的键值
您可以使用table input format类及其作业参数来提供表名和扫描配置
示例:
conf.set(TableInputFormat.INPUT_TABLE, "tablename");
JavaPairRDD<ImmutableBytesWritable, Result> data =
jsc.newAPIHadoopRDD(conf, TableInputFormat.class,ImmutableBytesWritable.class, Result.class);
然后你可以在spark中进行json操作。由于火花可以在内存已满时进行重新计算,因此只会加载重新计算部分所需的数据(cmiiw),因此您不必担心数据大小
答案 2 :(得分:7)
只是添加关于如何添加扫描的评论:
TableInputFormat具有以下属性:
- SCAN_ROW_START
- SCAN_ROW_STOP
醇>
conf.set(TableInputFormat.SCAN_ROW_START, "startrowkey");
conf.set(TableInputFormat.SCAN_ROW_STOP, "stoprowkey");
答案 3 :(得分:7)
由于这个问题不是新问题,现在还有其他一些选择:
我对第一个项目了解不多,但看起来它不支持Spark 2.x.但是,它在Spark 1.6.x的RDD级别上提供了丰富的支持。
另一方面,Spark-on-HBase拥有Spark 2.0和即将推出的Spark 2.1的分支机构。该项目非常有前途,因为它专注于数据集/数据框架API。在幕后,它实现了标准的Spark Datasource API,并利用Spark Catalyst引擎进行查询优化。开发人员声称here它能够进行分区修剪,列修剪,谓词下推和实现数据本地化。下面将介绍一个使用此repo和Spark 2.0.2中的com.hortonworks:shc:1.0.0-2.0-s_2.11
工件的简单示例:
case class Record(col0: Int, col1: Int, col2: Boolean)
val spark = SparkSession
.builder()
.appName("Spark HBase Example")
.master("local[4]")
.getOrCreate()
def catalog =
s"""{
|"table":{"namespace":"default", "name":"table1"},
|"rowkey":"key",
|"columns":{
|"col0":{"cf":"rowkey", "col":"key", "type":"int"},
|"col1":{"cf":"cf1", "col":"col1", "type":"int"},
|"col2":{"cf":"cf2", "col":"col2", "type":"boolean"}
|}
|}""".stripMargin
val artificialData = (0 to 100).map(number => Record(number, number, number % 2 == 0))
// write
spark
.createDataFrame(artificialData)
.write
.option(HBaseTableCatalog.tableCatalog, catalog)
.option(HBaseTableCatalog.newTable, "5")
.format("org.apache.spark.sql.execution.datasources.hbase")
.save()
// read
val df = spark
.read
.option(HBaseTableCatalog.tableCatalog, catalog)
.format("org.apache.spark.sql.execution.datasources.hbase")
.load()
df.count()