我正在关注RHadoop教程,https://github.com/RevolutionAnalytics/rmr2/blob/master/docs/tutorial.md并运行第二个示例,但是我遇到了无法解决的错误。 代码如下:
groups = rbinom(32,n=50,prob=0.4)
groupsdfs =to.dfs(groups)
mapreduceResult<- mapreduce(
input =groupsdfs,
map =function(.,v) keyval(v,1),
reduce = function(k,vv) keyval(k,sum(vv)))
from.dfs(mapreduceResult)
14/07/24 11:22:59 INFO mapreduce.Job: map 100% reduce 58%
14/07/24 11:23:01 INFO mapreduce.Job: Task Id : attempt_1406189659246_0001_r_000016_1, Status : FAILED
Error: java.lang.RuntimeException: Error in configuring object
at org.apache.hadoop.util.ReflectionUtils.setJobConf(ReflectionUtils.java:109)
at org.apache.hadoop.util.ReflectionUtils.setConf(ReflectionUtils.java:75)
at org.apache.hadoop.util.ReflectionUtils.newInstance(ReflectionUtils.java:133)
at org.apache.hadoop.mapred.ReduceTask.runOldReducer(ReduceTask.java:409)
at org.apache.hadoop.mapred.ReduceTask.run(ReduceTask.java:392)
at org.apache.hadoop.mapred.YarnChild$2.run(YarnChild.java:168)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:415)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1548)
at org.apache.hadoop.mapred.YarnChild.main(YarnChild.java:163)
Caused by: java.lang.reflect.InvocationTargetException
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at org.apache.hadoop.util.ReflectionUtils.setJobConf(ReflectionUtils.java:106)
... 9 more
Caused by: java.lang.RuntimeException: configuration exception
at org.apache.hadoop.streaming.PipeMapRed.configure(PipeMapRed.java:222)
at org.apache.hadoop.streaming.PipeReducer.configure(PipeReducer.java:67)
... 14 more
Caused by: java.io.IOException: Cannot run program "Rscript": error=2, No such file or directory
at java.lang.ProcessBuilder.start(ProcessBuilder.java:1041)
at org.apache.hadoop.streaming.PipeMapRed.configure(PipeMapRed.java:209)
... 15 more
Caused by: java.io.IOException: error=2, No such file or directory
at java.lang.UNIXProcess.forkAndExec(Native Method)
at java.lang.UNIXProcess.<init>(UNIXProcess.java:135)
at java.lang.ProcessImpl.start(ProcessImpl.java:130)
at java.lang.ProcessBuilder.start(ProcessBuilder.java:1022)
... 16 more
14/07/24 11:23:42 INFO mapreduce.Job: Job job_1406189659246_0001 failed with state FAILED due to: Task failed task_1406189659246_0001_r_000007
作业失败,因任务失败。 failedMaps:0 failedReduces:1
14/07/24 11:23:42 INFO mapreduce.Job: Counters: 54
File System Counters
FILE: Number of bytes read=1631
FILE: Number of bytes written=2036200
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=1073
HDFS: Number of bytes written=5198
HDFS: Number of read operations=67
HDFS: Number of large read operations=0
HDFS: Number of write operations=38
Job Counters
Failed map tasks=2
Failed reduce tasks=28
Killed reduce tasks=1
Launched map tasks=4
Launched reduce tasks=48
Other local map tasks=2
Data-local map tasks=2
Total time spent by all maps in occupied slots (ms)=18216
Total time spent by all reduces in occupied slots (ms)=194311
Total time spent by all map tasks (ms)=18216
Total time spent by all reduce tasks (ms)=194311
Total vcore-seconds taken by all map tasks=18216
Total vcore-seconds taken by all reduce tasks=194311
Total megabyte-seconds taken by all map tasks=18653184
Total megabyte-seconds taken by all reduce tasks=198974464
Map-Reduce Framework
Map input records=3
Map output records=25
Map output bytes=2196
Map output materialized bytes=2266
Input split bytes=214
Combine input records=0
Combine output records=0
Reduce input groups=10
Reduce shuffle bytes=1859
Reduce input records=21
Reduce output records=30
Spilled Records=46
Shuffled Maps =38
Failed Shuffles=0
Merged Map outputs=38
GC time elapsed (ms)=1339
CPU time spent (ms)=40060
Physical memory (bytes) snapshot=5958418432
Virtual memory (bytes) snapshot=33795457024
Total committed heap usage (bytes)=7176978432
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=859
File Output Format Counters
Bytes Written=5198
rmr
reduce calls=10
14/07/24 11:23:42 ERROR streaming.StreamJob: Job not Successful!
Streaming Command Failed!
Error in mr(map = map, reduce = reduce, combine = combine, vectorized.reduce, :
hadoop streaming failed with error code 1
有人会帮忙吗?我无法从这里继续前进。感谢。
答案 0 :(得分:0)
问题解决了。需要在集群中的所有节点上安装R和rhadoop相关的软件包。对于rhadoop问题,最好在他们的谷歌群组https://groups.google.com/forum/#!forum/rhadoop中发帖,你可以很快得到一些提示。
答案 1 :(得分:0)
这是wordcount的工作示例(在Cloudera Sandbox 4.6 / 5 / 5.1上运行) 重要的是初始化开始! ;)
Sys.setenv(HADOOP_CMD="/usr/bin/hadoop")
Sys.setenv(HADOOP_STREAMING="/opt/cloudera/parcels/CDH-5.1.0-1.cdh5.1.0.p0.53/lib/hadoop-0.20-mapreduce/contrib/streaming/hadoop-streaming.jar")
Sys.setenv(JAVA_HOME="/usr/java/jdk1.7.0_55-cloudera")
Sys.setenv(HADOOP_COMMON_LIB_NATIVE_DIR="/opt/cloudera/parcels/CDH-5.1.0-1.cdh5.1.0.p0.53/lib/hadoop/lib/native")
Sys.setenv(HADOOP_OPTS="-Djava.library.path=HADOOP_HOME/lib")
library(rhdfs)
hdfs.init()
library(rmr2)
## space and word delimiter
map <- function(k,lines) {
words.list <- strsplit(lines, '\\s')
words <- unlist(words.list)
return( keyval(words, 1) )
}
reduce <- function(word, counts) {
keyval(word, sum(counts))
}
wordcount <- function (input, output=NULL) {
mapreduce(input=input, output=output, input.format="text", map=map, reduce=reduce)
}
## variables
hdfs.root <- '/user/node'
hdfs.data <- file.path(hdfs.root, 'data')
hdfs.out <- file.path(hdfs.root, 'out')
## run mapreduce job
##out <- wordcount(hdfs.data, hdfs.out)
system.time(out <- wordcount(hdfs.data, hdfs.out))
## fetch results from HDFS
results <- from.dfs(out)
results.df <- as.data.frame(results, stringsAsFactors=F)
colnames(results.df) <- c('word', 'count')
##head(results.df)
## sorted output TOP10
head(results.df[order(-results.df$count),],10)