在worker只需要存储非共享数据的情况下使用DistributedArrays似乎过于复杂。我想做
r=remotecall(2,a=Float64[])
remotecall(2,setindex!,a,5,10) #Error
或
r=remotecall(2,zeros,10)
remotecall(2,setindex!,r,5,10) #Error.
我想为每个worker执行此操作,然后在异步上下文中访问该数组。执行一些计算,然后获取结果。由于let behavior of async
,我不确定这是否可行下面我做了一个简化的例子,我修改了the pmap example form the docs。 Ť
times=linspace(0.1,2.0,10) # times in secs representing different difficult computations
sort!(times,rev=true)
np = nprocs()
n = length(times)
#create local variables
for p=1:np
if p != myid() || np == 1
remotecall(p,stack = Float64p[]) #does not work
end
end
@everywhere function fun(s)
mid=myid()
sleep(s)
#s represents some computation save to local stack
push!(stack,s)
end
#asynchronously do the computations
@everywhere i = 1
function nextidx()
global i
idx=i;
i+=1;
return idx;
end
@sync begin
for p=1:np
if p != myid() || np == 1
@async begin
j=1
res=zeros(40);
while true
idx = nextidx()
if idx > n
break
end
remotecall(fun, times[idx])
end
end
end
end
end
# collect the results of the computations
for p=1:np
if p != myid() || np == 1
tmpStack=fetch(p,stack)
#do someting with the results
end
end
答案 0 :(得分:2)
当你修改工人的全局变量时使用'global'(例如,由@everywhere a = 3设置),你可以解决你的问题。查看下面的示例代码。
@everywhere a = 0
remotecall_fetch(2, ()->a) # print 0
@everywhere function change_a(b)
global a
a = b
end
b = 10
remotecall_fetch(2, change_a, b)
remotecall_fetch(2, ()->a) # print 10