返回ndarray字典会导致内存泄漏使用boost python

时间:2014-07-21 21:43:38

标签: python c++ opencv boost memory-leaks

我正在为python编写一个c ++模块。它需要一个图像,进行一些处理并返回一个图像字典。我有记忆泄漏,我无法弄清楚为什么......

我使用opencv-ndarray-conversioncv::Matnumpy.ndarray

之间进行转换

我使用Boost.Python将c ++代码转换为python模块。

我使用以下python代码测试c ++模块,同时运行htop来检查内存使用情况。

import cv2
import this_cpp_module

for i in xrange(100000):
    img = cv2.imread('a_640x480x3_image.png')
    ret = this_cpp_module.func(img)
    #this 'func' is mapping to one of the following c++ functions, using Boost.Python:
    #    func1, func2 or func3.

1,转换图像不会导致内存泄漏

using namespace boost::python;
PyObject * func1(PyObject *image)
{
    NDArrayConverter cvt;
    cv::Mat mat;
    mat = cvt.toMat(image);
    PyObject* ret = cvt.toNDArray(mat);
    return ret;
}

2,构造字典并将图像放入其中不会导致内存泄漏

using namespace boost::python;
dict func2(PyObject *image)
{
    dict pyDict;    
    object objImage(handle<>(borrowed(image)));
    pyDict[std::string("key")] = objImage;    
    return pyDict;
}

3,但组合它们会导致内存泄漏(每个循环大约1MB)

dict func3(PyObject *image)
{
    return func2(func1(image));
}

我无法理解。一切似乎对我来说都是正确的,但将它们组合在一起只会导致这个问题。

1 个答案:

答案 0 :(得分:2)

泄漏是func3()从未正确处理func1()返回的临时拥有引用的结果。要解决此问题,func3()需要执行以下操作之一:

  • 在从func1()返回之前,从func3()返回的拥有引用上显式调用Py_DECREF()
  • 使用boost::python::handle管理func1()返回的值,因为当handle被销毁时,它会减少对象的引用计数。

例如,func3()可以写成:

boost::python::dict func3(PyObject* image)
{
  // func1() returns an owned reference, so create a handle to keep the
  // object alive for at least as long as the handle remains alive.  The
  // handle will properly dispose of the reference.
  boost::python::handle<> handle(func1(image));
  return func2(handle.get());
}

有关原始问题的详细信息,当func1()返回时,返回的对象具有reference count of 1。从func2()func3()返回后,该对象的引用计数为2。当从dict返回的func3()被销毁时,最初从func1()返回的对象的引用计数将递减1,导致泄漏的对象的引用计数为1


以下是基于原始代码的完整最小示例:

#include <boost/python.hpp>

PyObject* func1(PyObject*)
{
  return PyList_New(0);
}

boost::python::dict func2(PyObject* obj)
{
  namespace python = boost::python;
  python::dict dict;
  python::handle<> handle(python::borrowed(obj));
  dict[std::string("key")] = python::object(handle);
  return dict;
}

boost::python::dict func3(PyObject* obj)
{
  // Fails to properly dispose of the owned reference returned by func1(),
  // resulting in a leak.
  return func2(func1(obj));
}

boost::python::dict func4(PyObject* obj)
{
  // func1() returns an owned reference, so create a handle to keep the
  // object alive for at least as long as the handle remains alive.  The
  // handle will properly dispose of the reference.
  boost::python::handle<> handle(func1(obj));
  return func2(handle.get());
}

BOOST_PYTHON_MODULE(example)
{
  namespace python = boost::python;
  python::def("func1", &func1);
  python::def("func2", &func2);
  python::def("func3", &func3);
  python::def("func4", &func4);
}

交互式使用:

>>> from sys import getrefcount
>>> import example
>>> x = example.func1(None)
>>> assert(2 == getrefcount(x)) # refs: x and getrefcount
>>> d = example.func2(x)
>>> assert(3 == getrefcount(x)) # refs: x, d["key"], and getrefcount
>>> d = None
>>> assert(2 == getrefcount(x)) # refs: x and getrefcount
>>> d = example.func3(None)
>>> x = d["key"]
>>> assert(4 == getrefcount(x)) # refs: x, d["key"], getrefcount, and one leak
>>> d = None
>>> assert(3 == getrefcount(x)) # refs: x, getrefcount, and one leak
>>> d = example.func4(None)
>>> x = d["key"]
>>> assert(3 == getrefcount(x)) # refs: x, d["key"], and getrefcount
>>> d = None
>>> assert(2 == getrefcount(x)) # refs: x and getrefcount