我们计划将Apache Pig代码移动到新的Spark平台。
Pig具有“Bag / Tuple / Field”概念,其行为与关系数据库类似。 Pig为CROSS / INNER / OUTER连接提供支持。
对于CROSS JOIN,我们可以使用alias = CROSS alias, alias [, alias …] [PARTITION BY partitioner] [PARALLEL n];
但是当我们转向Spark平台时,我在Spark API中找不到任何对应物。你有什么想法吗?
答案 0 :(得分:20)
是oneRDD.cartesian(anotherRDD)
。
答案 1 :(得分:3)
以下是Spark 2.x Datasets和DataFrames的推荐版本:
scala> val ds1 = spark.range(10)
ds1: org.apache.spark.sql.Dataset[Long] = [id: bigint]
scala> ds1.cache.count
res1: Long = 10
scala> val ds2 = spark.range(10)
ds2: org.apache.spark.sql.Dataset[Long] = [id: bigint]
scala> ds2.cache.count
res2: Long = 10
scala> val crossDS1DS2 = ds1.crossJoin(ds2)
crossDS1DS2: org.apache.spark.sql.DataFrame = [id: bigint, id: bigint]
scala> crossDS1DS2.count
res3: Long = 100
或者,可以使用没有连接条件的传统JOIN语法。使用此配置选项可以避免后面的错误。
spark.conf.set("spark.sql.crossJoin.enabled", true)
省略该配置时出错(具体使用“join”语法):
scala> val crossDS1DS2 = ds1.join(ds2)
crossDS1DS2: org.apache.spark.sql.DataFrame = [id: bigint, id: bigint]
scala> crossDS1DS2.count
org.apache.spark.sql.AnalysisException: Detected cartesian product for INNER join between logical plans
...
Join condition is missing or trivial.
Use the CROSS JOIN syntax to allow cartesian products between these relations.;