参考:https://stackoverflow.com/a/19726081/1182021
OrderedDict([
('company 1', tup(price=246, year='1991', month='march')),
('company 2', tup(price=245, year='1990', month='jan')),
('company 3', tup(price=243, year='1990', month='jan')),
('company 4', tup(price=247, year='1991', month='december')),
('company 5', tup(price=245, year='1991', month='june'))])
如何以csv格式导出此数据,如下所示:
Company Name , Price , Year , Month
Company 1 , 246 , 1991 , march
Company 2 , 245 , 1990 , jan
我尝试使用import csv
这样创建一个csv( ALL IN SAME ROW ):
myfile = open(csvfile, 'wb')
wr = csv.writer(myfile , quoting=csv.QUOTE_ALL)
wr.writerow(data_list)
编辑1
其中data_list
是OrderedDict,我得到的数据格式不正确
Company-A | Filtered(Year='2013', Month='Dec', Price=0) Company-B | Filtered(Year='2013', Month='Dec', Price=0) | Company-C | Filtered(Year='2013', Month='Dec', Price=0) | Company-D | Filtered(Year='2013', Month='Dec', Price=0) Company-E | Filtered(Year='2013', Month='Dec', Price=0)
编辑2
好的,我按照data_list = OrderedDict.items()
正如mkrehili所建议的那样,我将此作为我的导出方法:
def ExportData(csv_file, data_list):
csv_file = open(csv_file, 'wb')
wr = csv.writer(csv_file, quoting=csv.QUOTE_ALL)
for company_name, company_data in data_list:
wr.writerow([company_name] + list(company_data))
我现在正在获取此列表:
[('Company-A', Filtered(Year='2013', Month='Dec', Price=0)), ('Company-B', Filtered(Year='2013', Month='Dec', Price=0)), ('Company-C', Filtered(Year='2013', Month='Dec', Price=0)), ('Company-D', Filtered(Year='2013', Month='Dec', Price=0)), ('Company-E', Filtered(Year='2013', Month='Dec', Price=0))]
但是当我用CSV转换它时,输出如下:
Company-A 2013 Dec 0
Company-B 2013 Dec 0
Company-C 2013 Dec 0
Company-D 2013 Dec 0
Company-E 2013 Dec 0
编辑3 实际上两个数据都不相同:
在OrderedDict中:
OrderedDict([
('company A', tup(price=246, year='1991', month='march')),
('company B', tup(price=245, year='1990', month='jan')),
('company C', tup(price=243, year='1990', month='jan')),
('company D', tup(price=247, year='1991', month='december')),
('company E', tup(price=245, year='1991', month='june'))])
但是一旦我data_list = OrderedDict.items()
,它就会给我这些数据:格式不正确:
[('Company-A', tup(price=0, year="2013", month='Dec')),
('Company-B', tup(price=0, year="2013", month='Dec')),
('Company-C', tup(price=0, year="2013", month='Dec')),
('Company-D', tup(price=0, year="2013", month='Dec')),
('Company-E', tup(price=0, year="2013", month='Dec'))]
所以主要是我的问题是创建一个简单的列表,我有这样的列表:
Company Name , Price , Year , Month
Company A , 246 , 1991 , march
Company B , 245 , 1990 , jan
......
......
编辑4
with open(csv_file, 'w') as f:
w = csv.writer(f)
w.writerow(('Company Name', 'Year', 'Month', 'Price'))
w.writerows([(name, data.year, data.month, data.price) for name, data in data_list])`
这给了我正确的导出,但是在每行之后我有一个空行,如下所示:
Company Name Year Month Price
Company-A 2000 Mar 1000
Company-B 2007 Mar 986
Company-C 1993 Jun 995
Company-D 2002 Apr 999
Company-E 2008 Oct 997
答案 0 :(得分:6)
import csv
from collections import namedtuple, OrderedDict
tup = namedtuple('tup', ['price', 'year', 'month'])
prices = OrderedDict([
('company A', tup(price=246, year='1991', month='march')),
('company B', tup(price=245, year='1990', month='jan')),
('company C', tup(price=243, year='1990', month='jan')),
('company D', tup(price=247, year='1991', month='december')),
('company E', tup(price=245, year='1991', month='june'))])
with open('output.csv', 'w') as f:
w = csv.writer(f)
w.writerow(('Company Name', 'Price', 'Year', 'Month')) # field header
w.writerows([(name, data.price, data.year, data.month) for name, data in prices.items()])
写入output.csv:
Company Name,Price,Year,Month
company A,246,1991,march
company B,245,1990,jan
company C,243,1990,jan
company D,247,1991,december
company E,245,1991,june
答案 1 :(得分:1)
namedtuple仍然是可迭代的,所以请对待它:
>>> tup = namedtuple('tup', ['price', 'year', 'month'])
>>> c = tup(price=246, year='1991', month='march')
>>> list(c)
[246, '1991', 'march']
>>> print(*c)
246 1991 march
所以在你的例子中(你没有发布完整的代码,这会让事情变得更难):
for company_name, company_data in data_list.items():
wr.writerow([company_name] + list(company_data))
答案 2 :(得分:0)
这是一个尊重问题标题的解决方案(提到命名元组而不是OrderedDict)。
像其他答案中那样的OrderedDict可能是一种更好的方法,但是我列出了它,以防万一它对可能不需要对行进行索引的其他人有用。
我制作了一个更通用的Gitlab代码段Name Tuple Demo: Saving a named tuple to csv,在此主题上有更多介绍。
from collections import namedtuple
import csv
from pathlib import Path
CompanyDetails = namedtuple(
'CompanyDetails', ('company_name', 'price', 'year', 'month',)
)
def format_csv_header(header_fields):
return tuple(
header_field.replace("_", " ").title()
for header_field in header_fields
)
def write_contents_to_csv(contents, csv_file):
with Path(csv_file).open('w') as outfile:
writer = csv.writer(outfile)
header = format_csv_header(contents._fields)
rows = zip(*contents)
all_rows = (header,) + (*rows,)
writer.writerows(all_rows)
# Example: Row Indexed. Consider using OrderedDict here instead!
company_details = CompanyDetails(
company_name=(
'Company 1', 'Company 2', 'Company 3', 'Company 4', 'Company 5',
),
price=(246, 245, 243, 247, 245,),
year=('1991', '1990', '1990', '1991', '1991',),
month=('march', 'jan', 'jan', 'december', 'june',)
)
write_contents_to_csv(company_details, '/tmp/company_details.csv')