在Scala中,可以在其他方法中定义方法。这将它们的使用范围限制在定义块内。我使用它们来提高使用几个高阶函数的代码的可读性。与匿名函数文字相比,这允许我在传递它们之前给它们有意义的名称。
例如:
class AggregatedPerson extends HashSet[PersonRecord] {
def mostFrequentName: String = {
type NameCount = (String, Int)
def moreFirst(a: NameCount, b: NameCount) = a._2 > b._2
def countOccurrences(nameGroup: (String, List[PersonRecord])) =
(nameGroup._1, nameGroup._2.size)
iterator.toList.groupBy(_.fullName).
map(countOccurrences).iterator.toList.
sortWith(moreFirst).head._1
}
}
是否有任何运行时成本,因为我应该注意嵌套方法定义?
闭包的答案有何不同?
答案 0 :(得分:56)
在compilaton期间,嵌套函数moveFirst
和countOccurences
移出到与mostFrequentName
相同的级别。它们得到编译器合成的名称:moveFirst$1
和countOccurences$1
。
此外,当您在没有参数列表的情况下引用其中一种方法时,它会被提升为一个函数。因此map(countOccurences)
与撰写map((a: (String, List[PersonRecord])) => countOccurences(a))
相同。这个匿名函数被编译为一个单独的类AggregatedPerson$$anonfun$mostFrequentName$2
,它除了转发到countOccurences$
之外什么都没有。
作为旁注,将方法提升为函数的过程称为Eta Expansion。如果在期望函数类型的上下文中省略参数列表(如在您的示例中),或者使用_
代替整个参数列表,或者使用每个参数({ {1}}。
如果代码直接在闭包中,那么堆栈中的方法调用将减少一个,并且生成的合成方法会减少一个。在大多数情况下,这对性能的影响可能为零。
我发现它是构建代码的一个非常有用的工具,并认为你的例子非常惯用Scala。
另一个有用的工具是使用小块来初始化val:
val f1 = countOccurences _ ; val f2 = countOccurences(_)
您可以使用val a = {
val temp1, temp2 = ...
f(temp1, temp2)
}
确切地了解Scala代码如何转换为为JVM准备好的表单。下面是程序的输出:
scalac -print
答案 1 :(得分:14)
运行成本很低。你可以在这里观察它(为长代码道歉):
object NestBench {
def countRaw() = {
var sum = 0
var i = 0
while (i<1000) {
sum += i
i += 1
var j = 0
while (j<1000) {
sum += j
j += 1
var k = 0
while (k<1000) {
sum += k
k += 1
sum += 1
}
}
}
sum
}
def countClosure() = {
var sum = 0
var i = 0
def sumI {
sum += i
i += 1
var j = 0
def sumJ {
sum += j
j += 1
var k = 0
def sumK {
def sumL { sum += 1 }
sum += k
k += 1
sumL
}
while (k<1000) sumK
}
while (j<1000) sumJ
}
while (i<1000) sumI
sum
}
def countInner() = {
var sum = 0
def whileI = {
def whileJ = {
def whileK = {
def whileL() = 1
var ksum = 0
var k = 0
while (k<1000) { ksum += k; k += 1; ksum += whileL }
ksum
}
var jsum = 0
var j = 0
while (j<1000) {
jsum += j; j += 1
jsum += whileK
}
jsum
}
var isum = 0
var i = 0
while (i<1000) {
isum += i; i += 1
isum += whileJ
}
isum
}
whileI
}
def countFunc() = {
def summer(f: => Int)() = {
var sum = 0
var i = 0
while (i<1000) {
sum += i; i += 1
sum += f
}
sum
}
summer( summer( summer(1) ) )()
}
def nsPerIteration(f:() => Int): (Int,Double) = {
val t0 = System.nanoTime
val result = f()
val t1 = System.nanoTime
(result , (t1-t0)*1e-9)
}
def main(args: Array[String]) {
for (i <- 1 to 5) {
val fns = List(countRaw _, countClosure _, countInner _, countFunc _)
val labels = List("raw","closure","inner","func")
val results = (fns zip labels) foreach (fl => {
val x = nsPerIteration( fl._1 )
printf("Method %8s produced %d; time/it = %.3f ns\n",fl._2,x._1,x._2)
})
}
}
}
有四种不同的求和方法:
我们在内部循环中以纳秒的形式看到我机器上的结果:
scala> NestBench.main(Array[String]())
Method raw produced -1511174132; time/it = 0.422 ns
Method closure produced -1511174132; time/it = 2.376 ns
Method inner produced -1511174132; time/it = 0.402 ns
Method func produced -1511174132; time/it = 0.836 ns
Method raw produced -1511174132; time/it = 0.418 ns
Method closure produced -1511174132; time/it = 2.410 ns
Method inner produced -1511174132; time/it = 0.399 ns
Method func produced -1511174132; time/it = 0.813 ns
Method raw produced -1511174132; time/it = 0.411 ns
Method closure produced -1511174132; time/it = 2.372 ns
Method inner produced -1511174132; time/it = 0.399 ns
Method func produced -1511174132; time/it = 0.813 ns
Method raw produced -1511174132; time/it = 0.411 ns
Method closure produced -1511174132; time/it = 2.370 ns
Method inner produced -1511174132; time/it = 0.399 ns
Method func produced -1511174132; time/it = 0.815 ns
Method raw produced -1511174132; time/it = 0.412 ns
Method closure produced -1511174132; time/it = 2.357 ns
Method inner produced -1511174132; time/it = 0.400 ns
Method func produced -1511174132; time/it = 0.817 ns
所以,底线是:在简单的情况下,嵌套函数根本不会伤害到你 - JVM会发现调用可以内联(因此raw
和inner
给出了同一时间)。如果采用更多功能方法,则函数调用不能完全忽略,但所花费的时间非常小(每次调用大约0.4 ns)。如果你使用了很多闭包,那么关闭它们会产生每次调用1 ns的开销,至少在这种情况下写入一个可变变量。
你可以修改上面的代码来找到其他问题的答案,但最重要的是它是非常快的,介于“无任何惩罚”到“只担心在非常严格的内部循环中,否则有最小的工作要做“。
(P.S。为了比较,在我的机器上创建一个小对象需要大约4 ns。)
答案 2 :(得分:7)
截至2014年1月的当前
目前的基准测试已经有3年的历史了,Hotspot和编译器已经有了很大的发展。我也使用Google Caliper来执行基准测试。
import com.google.caliper.SimpleBenchmark
class Benchmark extends SimpleBenchmark {
def timeRaw(reps: Int) = {
var i = 0
var result = 0L
while (i < reps) {
result += 0xc37e ^ (i * 0xd5f3)
i = i + 1
}
result
}
def normal(i: Int): Long = 0xc37e ^ (i * 0xd5f3)
def timeNormal(reps: Int) = {
var i = 0
var result = 0L
while (i < reps) {
result += normal(i)
i = i + 1
}
result
}
def timeInner(reps: Int) = {
def inner(i: Int): Long = 0xc37e ^ (i * 0xd5f3)
var i = 0
var result = 0L
while (i < reps) {
result += inner(i)
i = i + 1
}
result
}
def timeClosure(reps: Int) = {
var i = 0
var result = 0L
val closure = () => result += 0xc37e ^ (i * 0xd5f3)
while (i < reps) {
closure()
i = i + 1
}
result
}
def normal(i: Int, j: Int, k: Int, l: Int): Long = i ^ j ^ k ^ l
def timeUnboxed(reps: Int) = {
var i = 0
var result = 0L
while (i < reps) {
result += normal(i,i,i,i)
i = i + 1
}
result
}
val closure = (i: Int, j: Int, k: Int, l: Int) => (i ^ j ^ k ^ l).toLong
def timeBoxed(reps: Int) = {
var i = 0
var result = 0L
while (i < reps) {
closure(i,i,i,i)
i = i + 1
}
result
}
}
benchmark ns linear runtime
Normal 0.576 =
Raw 0.576 =
Inner 0.576 =
Closure 0.532 =
Unboxed 0.893 =
Boxed 15.210 ==============================
令人惊讶的是,闭合测试比其他测试完成快约4ns。这似乎是Hotspot的特质而不是执行环境,多次运行都返回了相同的趋势。
使用执行装箱的闭包是一个巨大的性能打击,执行一次拆箱和重新装箱需要大约3.579ns,足以进行大量的原始数学运算。在这个特定的位置,在new optimizer上完成工作可能会有所改善。在一般情况下,拳击可能会被miniboxing缓解。
修改强>
新的优化器在这里没有用,它使Closure
慢0.1 ns,Boxed
0.1 ns更快:
benchmark ns linear runtime
Raw 0.574 =
Normal 0.576 =
Inner 0.575 =
Closure 0.645 =
Unboxed 0.889 =
Boxed 15.107 ==============================
从magarciaEPFL / scala执行2.11.0-20131209-220002-9587726041
java version "1.7.0_51"
Java(TM) SE Runtime Environment (build 1.7.0_51-b13)
Java HotSpot(TM) 64-Bit Server VM (build 24.51-b03, mixed mode)
Scala compiler version 2.10.3 -- Copyright 2002-2013, LAMP/EPFL