我正在尝试使用ggvis为2014赛季制作一张NFL力量表。这些数据来自FootballOutsiders.com,后来我将制作一个Shiny应用程序,在该季节更新时会自动从网站上删除数据。下面的例子非常接近,但我想做一些修改。我想......
在图表的每个单元格中包含“防御”的数值,因此可视化类似于原始的“df”数据框。
自定义色标,使正值逐渐变为橙色,负值逐渐变为蓝色(即更多负值=更蓝色)。
#2的替代方案可以是从橙色到蓝色的渐变,并且当“防御”的值接近零时,使不透明度降低到0.5。
能够选择NA的颜色,因为它当前在图表中显示为黑色。
我一直在修补add_scale()
和props()
,但到目前为止还没有任何工作。
这是图表:
以下是数据:
df <- structure(list(team = c("ARI", "ATL", "BAL", "BUF", "CAR", "CHI",
"CIN", "CLE", "DAL", "DEN", "DET", "GB", "HOU", "IND", "JAX",
"KC", "MIA", "MIN", "NE", "NO", "NYG", "NYJ", "OAK", "PHI", "PIT",
"SD", "SEA", "SF", "STL", "TB", "TEN", "WAS"), w1 = c(17.5, -5.8,
-12.6, 8.7, -6.8, -13.8, -8.7, 4, -4.6, 0.9, -11.4, -25.9, 4.2,
-0.2, 4.9, 4.2, 4.2, -5.7, 2.4, 13.5, -0.8, 10.3, -5.6, 10.9,
8.2, -16.4, 14.4, 13.8, 10.5, -15.7, -6.7, 2.5), w2 = c(-11.4,
-12.6, 4, 2.4, -0.8, -4.6, 13.5, -5.8, 4.2, -6.7, -15.7, -5.6,
10.3, 4.9, 4.2, -0.2, -13.8, 4.2, 10.5, 8.2, -16.4, 14.4, 2.5,
0.9, -8.7, -25.9, 17.5, 8.7, -6.8, -5.7, 13.8, 10.9), w3 = c(-4.6,
-6.8, 8.2, 17.5, 4, -5.6, 4.2, -8.7, -5.7, -25.9, 14.4, -0.8,
-11.4, 10.9, 0.9, 2.4, -6.7, -5.8, 10.3, 10.5, 2.5, 8.7, 4.2,
4.2, -15.7, -13.8, -0.2, -16.4, 13.8, 13.5, -12.6, 4.9), w4 = c(NA,
10.5, -15.7, 2.5, -8.7, 14.4, NA, NA, -5.8, NA, -5.6, 8.7, -13.8,
4.2, 17.5, 4.2, 10.3, 13.5, -6.7, 13.8, 4.2, -0.8, 2.4, -4.6,
-6.8, 10.9, NA, 4.9, NA, 4, 0.9, -11.4), w5 = c(-0.2, -11.4,
0.9, -0.8, 8.7, -15.7, 4.2, 4.2, 2.5, -16.4, -13.8, 10.5, 13.8,
-8.7, 4, -4.6, NA, 14.4, -12.6, -6.8, 13.5, 17.5, NA, -5.7, 10.9,
-5.6, 4.2, -6.7, 4.9, -5.8, 8.2, -25.9), w6 = c(4.2, 8.7, -6.8,
4.2, -12.6, 13.5, -15.7, 4, -25.9, -5.6, 10.5, 2.4, 0.9, 2.5,
4.2, NA, 14.4, -0.8, -13.8, NA, 4.9, -0.2, 17.5, -11.4, 8.2,
10.3, 13.8, -5.7, -4.6, -8.7, 10.9, -16.4), w7 = c(10.3, -8.7,
13.5, 10.5, 14.4, 2.4, 0.9, 10.9, -11.4, -4.6, -5.8, -15.7, 4,
-12.6, 8.2, 17.5, 8.7, -13.8, -5.6, -0.8, 13.8, 4.2, -16.4, NA,
2.5, -6.7, -5.7, -0.2, -25.9, NA, 4.2, 4.2), w8 = c(4.9, -0.8,
-12.6, -5.6, -25.9, 4.2, -8.7, 10.3, 4.2, 17.5, 13.5, -5.8, 4.2,
4, 2.4, -5.7, 10.9, -6.8, 8.7, 14.4, NA, -13.8, 8.2, -16.4, 0.9,
-0.2, -15.7, NA, -6.7, 10.5, 2.5, 13.8), w9 = c(13.8, NA, 4,
NA, -5.8, NA, 10.9, -6.8, -16.4, 4.2, NA, NA, 4.9, -11.4, -12.6,
-5.6, 17.5, 4.2, -0.2, -15.7, 0.9, -6.7, -25.9, 2.5, -8.7, 2.4,
10.3, -5.7, -4.6, 8.2, NA, 10.5), w10 = c(-5.7, -6.8, 4.2, -6.7,
4.9, 14.4, 8.2, -12.6, 10.9, 10.3, 2.4, 8.7, NA, NA, 13.8, -13.8,
-0.8, NA, NA, -4.6, -25.9, 4, -0.2, -15.7, -5.6, NA, -11.4, -5.8,
-16.4, 13.5, -8.7, NA), w11 = c(-0.8, -15.7, NA, 2.4, 13.5, 10.5,
-5.8, 2.5, NA, -5.7, -16.4, 4.9, 8.2, 4.2, NA, -25.9, -13.8,
8.7, 0.9, -12.6, -4.6, NA, 17.5, 14.4, 4.2, 10.3, -6.7, -11.4,
-0.2, 4.2, 4, -6.8), w12 = c(-25.9, 8.2, -5.8, -5.6, NA, -6.8,
2.5, 13.5, -11.4, 2.4, 4.2, 10.5, -12.6, 10.9, 0.9, 10.3, -0.2,
14.4, -0.8, -8.7, 13.8, -13.8, -6.7, 4.2, NA, -5.7, -16.4, 4.2,
17.5, 8.7, 4.9, -4.6), w13 = c(13.5, -16.4, 17.5, 8.2, 10.5,
-0.8, -6.8, -13.8, 4.9, -6.7, 8.7, 4.2, 4.2, 4.2, -11.4, -0.2,
-5.6, -15.7, 14.4, 4, 10.9, 2.4, -5.7, 13.8, -5.8, -8.7, -4.6,
-25.9, 10.3, -12.6, 2.5, 0.9), w14 = c(-6.7, 14.4, 2.4, -0.2,
-5.8, 13.8, 4, 0.9, 8.7, -13.8, -6.8, 13.5, 10.9, 8.2, 2.5, -16.4,
-8.7, -5.6, 17.5, -15.7, 4.2, 10.5, -4.6, -25.9, -12.6, 4.2,
4.9, 10.3, 4.2, -0.8, -11.4, -5.7), w15 = c(-5.7, 4, 10.9, 14.4,
-6.8, -5.8, 8.2, -12.6, 4.9, 17.5, 10.5, -13.8, 0.9, 2.5, -8.7,
10.3, 4.2, -0.8, 2.4, 8.7, 4.2, 4.2, -6.7, 13.8, 13.5, -0.2,
-4.6, -25.9, -16.4, -15.7, -5.6, -11.4), w16 = c(-25.9, -5.8,
2.5, 10.3, 8.2, -0.8, -0.2, -15.7, 0.9, -12.6, 8.7, -6.8, -8.7,
13.8, 4.2, 4, 10.5, 2.4, -5.6, 13.5, -5.7, 4.2, -13.8, 4.2, -6.7,
-4.6, -16.4, 17.5, -11.4, 14.4, 10.9, 4.9), w17 = c(-4.6, -15.7,
8.2, 4.2, 13.5, 10.5, 4, -8.7, 4.2, 10.3, 14.4, -0.8, 10.9, 4.2,
2.5, 17.5, -5.6, 8.7, -13.8, -6.8, 4.9, 2.4, -0.2, -11.4, -12.6,
-6.7, -5.7, -16.4, -25.9, -5.8, 0.9, 13.8)), .Names = c("team",
"w1", "w2", "w3", "w4", "w5", "w6", "w7", "w8", "w9", "w10",
"w11", "w12", "w13", "w14", "w15", "w16", "w17"), row.names = c(NA,
32L), class = "data.frame")
到目前为止,这是代码:
require(dplyr)
require(ggvis)
require(tidyr) # For the gather function
df2 <- df %>% gather(key, value, w1:w17)
names(df2) <- c("team", "week", "defense")
df2 %>%
ggvis(~week, ~team, fill = ~defense) %>%
layer_rects(width = band(), height = band()) %>%
scale_nominal("x", padding = 0, points = FALSE) %>%
scale_nominal("y", padding = 0, points = FALSE)
答案 0 :(得分:14)
我通过创建一个新变量def.color
来设置每个单元格的颜色,该变量将defense
的每个值映射到特定颜色。在ggplot2
中,您可以使用一行代码(例如ggplot
)直接在scale_fill_manual()
调用中设置颜色,而不是在数据框中添加颜色变量。我希望在ggvis
中有办法做到这一点,但我还没有找到它。所以,现在,我们走了:
# Create a new variable df2$def.color for mapping df2$defense values to colors
# Functions to create color ramps for the blue and orange color ranges
Blue = colorRampPalette(c("darkblue","lightblue"))
Orange = colorRampPalette(c("orange","darkorange3"))
# Negative values of defense get a blue color scale with 10 colors
df2$def.color[!is.na(df2$defense) & df2$defense<0] =
as.character(cut(df2$defense[!is.na(df2$defense) & df2$defense<0],
seq(min(df2$defense - 0.1, na.rm=TRUE), 0, length.out=11),
labels=Blue(10)))
# Positive values of defense get an orange color scale with 10 colors
df2$def.color[!is.na(df2$defense) & df2$defense>=0] =
as.character(cut(df2$defense[!is.na(df2$defense) & df2$defense>=0],
seq(0, max(df2$defense, na.rm=TRUE)+0.1, length.out=11),
labels=Orange(10)))
# Set NA values in df2$def.color to light gray in df2$def.color
df2$def.color[is.na(df2$defense)] = "#E5E5E5"
# Set NA values in df2$defense to blanks so that we won't get "NaN" in cells with
# missing data
df2$defense[is.na(df2$defense)] = ""
现在我们创建情节。要获取颜色,请使用def.color
将fill
映射到:=
以覆盖默认颜色。要添加defense
的值,请使用layer_text
。我对每个单元格中的文本放置都不满意,但这是我现在能够想到的最好的。
df2 %>%
ggvis(~week, ~team, fill:=~def.color) %>%
layer_rects(width = band(), height = band()) %>%
scale_nominal("x", padding = 0, points = FALSE) %>%
scale_nominal("y", padding = 0, points = FALSE) %>%
layer_text(text:=~defense, stroke:="white", align:="left", baseline:="top")
答案 1 :(得分:2)
我发现使用scale_ordinal
功能显示图例的解决方案。我使用了很多@ eipi10编写的代码,谢谢!
# Functions to create color ramps for the blue and orange color ranges,
# combined in a single palette with 10 colors of each ramp and gray for NAs
Blue <- colorRampPalette(c("darkblue","lightblue"))
Orange <- colorRampPalette(c("orange","darkorange3"))
palette <- c(Blue(10), "#E5E5E5", Orange(10))
# Negative values of defense get a blue color scale with 10 colors, indexes
# from 1 to 10
df2$def.label[!is.na(df2$defense) & df2$defense<0] <-
as.character(cut(df2$defense[!is.na(df2$defense) & df2$defense<0],
seq(min(df2$defense - 0.1, na.rm = TRUE), 0, length.out = 11),
labels = palette[1:10]))
# Positive values of defense get an orange color scale with 10 colors,
# indexes from 12 to 21
df2$def.label[!is.na(df2$defense) & df2$defense>=0] <-
as.character(cut(df2$defense[!is.na(df2$defense) & df2$defense>=0],
seq(0, max(df2$defense, na.rm = TRUE) + 0.1, length.out = 11),
labels = palette[12:21]))
# Set NA values in df2$defense to 11 in def.label, the label for gray color
df2$def.label[is.na(df2$defense)] <- palette[[11]]
# Define the values to be displayed on the legend
pos.cut.values <- seq(0, max(df2$defense, na.rm = TRUE) + 0.1, length.out = 11)
neg.cut.values <- seq(min(df2$defense - 0.1, na.rm = TRUE), 0, length.out = 11)
legend.values <- c(paste(neg.cut.values[1:10], '..', neg.cut.values[2:11]),
'NA', paste(pos.cut.values[1:10], '..', pos.cut.values[2:11]))
# Set NA values in df2$defense to blanks so that we won't get "NaN" in cells
# with missing data
df2$defense[is.na(df2$defense)] <- ""
df2 %>%
ggvis(~week, ~team, fill:=~def.label) %>%
scale_ordinal('fill', range = palette) %>%
add_legend(scales = 'fill', values = legend.values) %>%
layer_rects(width = band(), height = band()) %>%
scale_nominal("x", padding = 0, points = FALSE) %>%
scale_nominal("y", padding = 0, points = FALSE) %>%
layer_text(text := ~defense, stroke := "white", align := "left",
baseline := "top")