使用CostModel获取LLVM IR的cpu周期

时间:2014-07-17 02:21:17

标签: llvm llvm-ir

从LLVM 3.0开始,Analysis目录下有CostModel.cpp。参考其文档,它说

  

此文件定义成本模型分析。它为LLVM-IR提供了非常基本的成本估算。此分析使用codegen的服务来估算降低到机器指令时任何IR指令的成本。成本结果是无单位的,成本数字代表机器的吞吐量,假设所有负载都到达缓存,所有分支都是预测的等等。可以添加成本数字以便比较两个或更多变换备选方案。

我想知道如何在IR文件上编译和使用此传递。具有适当命令的具体示例将是完美的。

1 个答案:

答案 0 :(得分:0)

以下是适合我的样本:

要测试的主要功能文件

#include <iostream>
#include <string>
#include <llvm/Support/MemoryBuffer.h>
#include <llvm/Support/ErrorOr.h>
#include <llvm/IR/Module.h>
#include <llvm/IR/LLVMContext.h>
#include <llvm/Bitcode/BitcodeReader.h>
#include <llvm/Support/raw_ostream.h>
#include <llvm/Analysis/Passes.h>
#include <llvm/Analysis/TargetTransformInfo.h>
#include <llvm/Analysis/CostModelDummy.h>
#include "llvm/IRReader/IRReader.h"
#include "llvm/Support/SourceMgr.h"

using namespace llvm;

int main(int argc, char *argv[]) {
    StringRef filename = "FILE_NAME";
    LLVMContext context;

    ErrorOr<std::unique_ptr<MemoryBuffer>> fileOrErr =
        MemoryBuffer::getFileOrSTDIN(filename);
    if (std::error_code ec = fileOrErr.getError()) {
        std::cerr << " Error opening input file: " + ec.message() << std::endl;
        return 2;
    }
    Expected<std::unique_ptr<Module>> moduleOrErr =
        parseBitcodeFile(fileOrErr.get()->getMemBufferRef(), context);
    if (std::error_code ec = fileOrErr.getError()) {
        std::cerr << "Error reading Moduule: " + ec.message() << std::endl;
        return 3;
    }

    llvm::SMDiagnostic Err;
    llvm::LLVMContext Context;
    std::unique_ptr<llvm::Module> m(parseIRFile(filename, Err, Context));
    if (!m)
      return 4;

    std::cout << "Successfully read Module:" << std::endl;
    std::cout << " Name: " << m->getName().str() << std::endl;
    std::cout << " Target triple: " << m->getTargetTriple() << std::endl;

    for (auto iter1 = m->getFunctionList().begin(); iter1 != m->getFunctionList().end(); iter1++) {
        Function &f = *iter1;

        CostModelAnalysisDummy obj;
        std::cout << " STEP: 1 Function: " << f.getName().str() << std::endl;
        obj.runOnFunction(f);

        std::cout << " STEP: 2 Function: " << f.getName().str() << std::endl;
        for (auto iter2 = f.getBasicBlockList().begin(); iter2 != f.getBasicBlockList().end(); iter2++) {
            BasicBlock &bb = *iter2;
            std::cout << "  BasicBlock: " << bb.getName().str() << std::endl;
            for (auto iter3 = bb.begin(); iter3 != bb.end(); iter3++) {
                Instruction &inst = *iter3;

                std::cout << std::endl << " Number of Cycles" << obj.getInstructionCost(&inst) << std::endl;

                std::cout << "   Instruction " << &inst << " : " << inst.getOpcodeName();

                unsigned int  i = 0;
                unsigned int opnt_cnt = inst.getNumOperands();
                for (; i < opnt_cnt; ++i)
                {
                    Value *opnd = inst.getOperand(i);
                    std::string o;
                    //          raw_string_ostream os(o);
                    //         opnd->print(os);
                    //opnd->printAsOperand(os, true, m);
                    if (opnd->hasName()) {
                        o = opnd->getName();
                        std::cout << " " << o << ",";
                    }
                    else {
                        std::cout << " ptr" << opnd << ",";
                    }
                }
                std::cout << std::endl;
            }
        }
    }
    return 0;
}

源文件

//===- CostModel.cpp ------ Cost Model Analysis ---------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the cost model analysis. It provides a very basic cost
// estimation for LLVM-IR. This analysis uses the services of the codegen
// to approximate the cost of any IR instruction when lowered to machine
// instructions. The cost results are unit-less and the cost number represents
// the throughput of the machine assuming that all loads hit the cache, all
// branches are predicted, etc. The cost numbers can be added in order to
// compare two or more transformation alternatives.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/CostModelDummy.h"

using namespace llvm;

// Register this pass.
char CostModelAnalysisDummy::ID = 0;
static const char cm_name[] = "Cost Model Analysis";
INITIALIZE_PASS_BEGIN(CostModelAnalysisDummy, CM_NAME, cm_name, false, true)
INITIALIZE_PASS_END(CostModelAnalysisDummy, CM_NAME, cm_name, false, true)


static cl::opt<bool> EnableReduxCost("costmodel-reduxcost-Dummy", cl::init(false),
    cl::Hidden,
    cl::desc("Recognize reduction patterns."));

FunctionPass *createCostModelAnalysisDummyPass() {
  return new CostModelAnalysisDummy();
}

void
CostModelAnalysisDummy::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesAll();
}

bool
CostModelAnalysisDummy::runOnFunction(Function &F) {
 this->F = &F;
 PMDataManager *DM = getAsPMDataManager();
 AnalysisResolver *AR = new AnalysisResolver(*DM);
 setResolver(AR);
 setTopLevelManager(new CostModelAnalysisDummy());


 recordAvailableAnalysis(new TargetTransformInfoWrapperPass());
 auto *TTIWP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>();
 TTI = TTIWP ? &TTIWP->getTTI(F) : nullptr;

 return false;
}

static bool isReverseVectorMask(ArrayRef<int> Mask) {
  for (unsigned i = 0, MaskSize = Mask.size(); i < MaskSize; ++i)
    if (Mask[i] >= 0 && Mask[i] != (int)(MaskSize - 1 - i))
      return false;
  return true;
}

static bool isSingleSourceVectorMask(ArrayRef<int> Mask) {
  bool Vec0 = false;
  bool Vec1 = false;
  for (unsigned i = 0, NumVecElts = Mask.size(); i < NumVecElts; ++i) {
    if (Mask[i] >= 0) {
      if ((unsigned)Mask[i] >= NumVecElts)
        Vec1 = true;
      else
        Vec0 = true;
    }
  }
  return !(Vec0 && Vec1);
}

static bool isZeroEltBroadcastVectorMask(ArrayRef<int> Mask) {
  for (unsigned i = 0; i < Mask.size(); ++i)
    if (Mask[i] > 0)
      return false;
  return true;
}

static bool isAlternateVectorMask(ArrayRef<int> Mask) {
  bool isAlternate = true;
  unsigned MaskSize = Mask.size();

  // Example: shufflevector A, B, <0,5,2,7>
  for (unsigned i = 0; i < MaskSize && isAlternate; ++i) {
    if (Mask[i] < 0)
      continue;
    isAlternate = Mask[i] == (int)((i & 1) ? MaskSize + i : i);
  }

  if (isAlternate)
    return true;

  isAlternate = true;
  // Example: shufflevector A, B, <4,1,6,3>
  for (unsigned i = 0; i < MaskSize && isAlternate; ++i) {
    if (Mask[i] < 0)
      continue;
    isAlternate = Mask[i] == (int)((i & 1) ? i : MaskSize + i);
  }

  return isAlternate;
}

static TargetTransformInfo::OperandValueKind getOperandInfo(Value *V) {
  TargetTransformInfo::OperandValueKind OpInfo =
      TargetTransformInfo::OK_AnyValue;

  // Check for a splat of a constant or for a non uniform vector of constants.
  if (isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) {
    OpInfo = TargetTransformInfo::OK_NonUniformConstantValue;
    if (cast<Constant>(V)->getSplatValue() != nullptr)
      OpInfo = TargetTransformInfo::OK_UniformConstantValue;
  }

  // Check for a splat of a uniform value. This is not loop aware, so return
  // true only for the obviously uniform cases (argument, globalvalue)
  const Value *Splat = getSplatValue(V);
  if (Splat && (isa<Argument>(Splat) || isa<GlobalValue>(Splat)))
    OpInfo = TargetTransformInfo::OK_UniformValue;

  return OpInfo;
}

static bool matchPairwiseShuffleMask(ShuffleVectorInst *SI, bool IsLeft,
                                     unsigned Level) {
  // We don't need a shuffle if we just want to have element 0 in position 0 of
  // the vector.
  if (!SI && Level == 0 && IsLeft)
    return true;
  else if (!SI)
    return false;

  SmallVector<int, 32> Mask(SI->getType()->getVectorNumElements(), -1);

  // Build a mask of 0, 2, ... (left) or 1, 3, ... (right) depending on whether
  // we look at the left or right side.
  for (unsigned i = 0, e = (1 << Level), val = !IsLeft; i != e; ++i, val += 2)
    Mask[i] = val;

  SmallVector<int, 16> ActualMask = SI->getShuffleMask();
  return Mask == ActualMask;
}

static bool matchPairwiseReductionAtLevel(const BinaryOperator *BinOp,
                                          unsigned Level, unsigned NumLevels) {
  // Match one level of pairwise operations.
  // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef,
  //       <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef>
  // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef,
  //       <4 x i32> <i32 1, i32 3, i32 undef, i32 undef>
  // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1
  if (BinOp == nullptr)
    return false;

  assert(BinOp->getType()->isVectorTy() && "Expecting a vector type");

  unsigned Opcode = BinOp->getOpcode();
  Value *L = BinOp->getOperand(0);
  Value *R = BinOp->getOperand(1);

  ShuffleVectorInst *LS = dyn_cast<ShuffleVectorInst>(L);
  if (!LS && Level)
    return false;
  ShuffleVectorInst *RS = dyn_cast<ShuffleVectorInst>(R);
  if (!RS && Level)
    return false;

  // On level 0 we can omit one shufflevector instruction.
  if (!Level && !RS && !LS)
    return false;

  // Shuffle inputs must match.
  Value *NextLevelOpL = LS ? LS->getOperand(0) : nullptr;
  Value *NextLevelOpR = RS ? RS->getOperand(0) : nullptr;
  Value *NextLevelOp = nullptr;
  if (NextLevelOpR && NextLevelOpL) {
    // If we have two shuffles their operands must match.
    if (NextLevelOpL != NextLevelOpR)
      return false;

    NextLevelOp = NextLevelOpL;
  } else if (Level == 0 && (NextLevelOpR || NextLevelOpL)) {
    // On the first level we can omit the shufflevector <0, undef,...>. So the
    // input to the other shufflevector <1, undef> must match with one of the
    // inputs to the current binary operation.
    // Example:
    //  %NextLevelOpL = shufflevector %R, <1, undef ...>
    //  %BinOp        = fadd          %NextLevelOpL, %R
    if (NextLevelOpL && NextLevelOpL != R)
      return false;
    else if (NextLevelOpR && NextLevelOpR != L)
      return false;

    NextLevelOp = NextLevelOpL ? R : L;
  } else
    return false;

  // Check that the next levels binary operation exists and matches with the
  // current one.
  BinaryOperator *NextLevelBinOp = nullptr;
  if (Level + 1 != NumLevels) {
    if (!(NextLevelBinOp = dyn_cast<BinaryOperator>(NextLevelOp)))
      return false;
    else if (NextLevelBinOp->getOpcode() != Opcode)
      return false;
  }

  // Shuffle mask for pairwise operation must match.
  if (matchPairwiseShuffleMask(LS, true, Level)) {
    if (!matchPairwiseShuffleMask(RS, false, Level))
      return false;
  } else if (matchPairwiseShuffleMask(RS, true, Level)) {
    if (!matchPairwiseShuffleMask(LS, false, Level))
      return false;
  } else
    return false;

  if (++Level == NumLevels)
    return true;

  // Match next level.
  return matchPairwiseReductionAtLevel(NextLevelBinOp, Level, NumLevels);
}

static bool matchPairwiseReduction(const ExtractElementInst *ReduxRoot,
                                   unsigned &Opcode, Type *&Ty) {
  if (!EnableReduxCost)
    return false;

  // Need to extract the first element.
  ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1));
  unsigned Idx = ~0u;
  if (CI)
    Idx = CI->getZExtValue();
  if (Idx != 0)
    return false;

  BinaryOperator *RdxStart = dyn_cast<BinaryOperator>(ReduxRoot->getOperand(0));
  if (!RdxStart)
    return false;

  Type *VecTy = ReduxRoot->getOperand(0)->getType();
  unsigned NumVecElems = VecTy->getVectorNumElements();
  if (!isPowerOf2_32(NumVecElems))
    return false;

  // We look for a sequence of shuffle,shuffle,add triples like the following
  // that builds a pairwise reduction tree.
  //
  //  (X0, X1, X2, X3)
  //   (X0 + X1, X2 + X3, undef, undef)
  //    ((X0 + X1) + (X2 + X3), undef, undef, undef)
  //
  // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef,
  //       <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef>
  // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef,
  //       <4 x i32> <i32 1, i32 3, i32 undef, i32 undef>
  // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1
  // %rdx.shuf.1.0 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
  //       <4 x i32> <i32 0, i32 undef, i32 undef, i32 undef>
  // %rdx.shuf.1.1 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
  //       <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
  // %bin.rdx8 = fadd <4 x float> %rdx.shuf.1.0, %rdx.shuf.1.1
  // %r = extractelement <4 x float> %bin.rdx8, i32 0
  if (!matchPairwiseReductionAtLevel(RdxStart, 0,  Log2_32(NumVecElems)))
    return false;

  Opcode = RdxStart->getOpcode();
  Ty = VecTy;

  return true;
}

static std::pair<Value *, ShuffleVectorInst *>
getShuffleAndOtherOprd(BinaryOperator *B) {

  Value *L = B->getOperand(0);
  Value *R = B->getOperand(1);
  ShuffleVectorInst *S = nullptr;

  if ((S = dyn_cast<ShuffleVectorInst>(L)))
    return std::make_pair(R, S);

  S = dyn_cast<ShuffleVectorInst>(R);
  return std::make_pair(L, S);
}

static bool matchVectorSplittingReduction(const ExtractElementInst *ReduxRoot,
                                          unsigned &Opcode, Type *&Ty) {
  if (!EnableReduxCost)
    return false;

  // Need to extract the first element.
  ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1));
  unsigned Idx = ~0u;
  if (CI)
    Idx = CI->getZExtValue();
  if (Idx != 0)
    return false;

  BinaryOperator *RdxStart = dyn_cast<BinaryOperator>(ReduxRoot->getOperand(0));
  if (!RdxStart)
    return false;
  unsigned RdxOpcode = RdxStart->getOpcode();

  Type *VecTy = ReduxRoot->getOperand(0)->getType();
  unsigned NumVecElems = VecTy->getVectorNumElements();
  if (!isPowerOf2_32(NumVecElems))
    return false;

  // We look for a sequence of shuffles and adds like the following matching one
  // fadd, shuffle vector pair at a time.
  //
  // %rdx.shuf = shufflevector <4 x float> %rdx, <4 x float> undef,
  //                           <4 x i32> <i32 2, i32 3, i32 undef, i32 undef>
  // %bin.rdx = fadd <4 x float> %rdx, %rdx.shuf
  // %rdx.shuf7 = shufflevector <4 x float> %bin.rdx, <4 x float> undef,
  //                          <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
  // %bin.rdx8 = fadd <4 x float> %bin.rdx, %rdx.shuf7
  // %r = extractelement <4 x float> %bin.rdx8, i32 0

  unsigned MaskStart = 1;
  Value *RdxOp = RdxStart;
  SmallVector<int, 32> ShuffleMask(NumVecElems, 0);
  unsigned NumVecElemsRemain = NumVecElems;
  while (NumVecElemsRemain - 1) {
    // Check for the right reduction operation.
    BinaryOperator *BinOp;
    if (!(BinOp = dyn_cast<BinaryOperator>(RdxOp)))
      return false;
    if (BinOp->getOpcode() != RdxOpcode)
      return false;

    Value *NextRdxOp;
    ShuffleVectorInst *Shuffle;
    std::tie(NextRdxOp, Shuffle) = getShuffleAndOtherOprd(BinOp);

    // Check the current reduction operation and the shuffle use the same value.
    if (Shuffle == nullptr)
      return false;
    if (Shuffle->getOperand(0) != NextRdxOp)
      return false;

    // Check that shuffle masks matches.
    for (unsigned j = 0; j != MaskStart; ++j)
      ShuffleMask[j] = MaskStart + j;
    // Fill the rest of the mask with -1 for undef.
    std::fill(&ShuffleMask[MaskStart], ShuffleMask.end(), -1);

    SmallVector<int, 16> Mask = Shuffle->getShuffleMask();
    if (ShuffleMask != Mask)
      return false;

    RdxOp = NextRdxOp;
    NumVecElemsRemain /= 2;
    MaskStart *= 2;
  }

  Opcode = RdxOpcode;
  Ty = VecTy;
  return true;
}

unsigned CostModelAnalysisDummy::getInstructionCost(const Instruction *I) const {

  if (!TTI)
    return -1;

  switch (I->getOpcode()) {
  case Instruction::GetElementPtr:
    return TTI->getUserCost(I);

  case Instruction::Ret:
  case Instruction::PHI:
  case Instruction::Br: {
    return TTI->getCFInstrCost(I->getOpcode());
  }
  case Instruction::Add:
  case Instruction::FAdd:
  case Instruction::Sub:
  case Instruction::FSub:
  case Instruction::Mul:
  case Instruction::FMul:
  case Instruction::UDiv:
  case Instruction::SDiv:
  case Instruction::FDiv:
  case Instruction::URem:
  case Instruction::SRem:
  case Instruction::FRem:
  case Instruction::Shl:
  case Instruction::LShr:
  case Instruction::AShr:
  case Instruction::And:
  case Instruction::Or:
  case Instruction::Xor: {
    TargetTransformInfo::OperandValueKind Op1VK =
      getOperandInfo(I->getOperand(0));
    TargetTransformInfo::OperandValueKind Op2VK =
      getOperandInfo(I->getOperand(1));
    SmallVector<const Value*, 2> Operands(I->operand_values()); 
    return TTI->getArithmeticInstrCost(I->getOpcode(), I->getType(), Op1VK,
                                       Op2VK, TargetTransformInfo::OP_None, 
                                       TargetTransformInfo::OP_None, 
                                       Operands);
  }
  case Instruction::Select: {
    const SelectInst *SI = cast<SelectInst>(I);
    Type *CondTy = SI->getCondition()->getType();
    return TTI->getCmpSelInstrCost(I->getOpcode(), I->getType(), CondTy);
  }
  case Instruction::ICmp:
  case Instruction::FCmp: {
    Type *ValTy = I->getOperand(0)->getType();
    return TTI->getCmpSelInstrCost(I->getOpcode(), ValTy);
  }
  case Instruction::Store: {
    const StoreInst *SI = cast<StoreInst>(I);
    Type *ValTy = SI->getValueOperand()->getType();
    return TTI->getMemoryOpCost(I->getOpcode(), ValTy,
                                 SI->getAlignment(),
                                 SI->getPointerAddressSpace());
  }
  case Instruction::Load: {
    const LoadInst *LI = cast<LoadInst>(I);
    return TTI->getMemoryOpCost(I->getOpcode(), I->getType(),
                                 LI->getAlignment(),
                                 LI->getPointerAddressSpace());
  }
  case Instruction::ZExt:
  case Instruction::SExt:
  case Instruction::FPToUI:
  case Instruction::FPToSI:
  case Instruction::FPExt:
  case Instruction::PtrToInt:
  case Instruction::IntToPtr:
  case Instruction::SIToFP:
  case Instruction::UIToFP:
  case Instruction::Trunc:
  case Instruction::FPTrunc:
  case Instruction::BitCast:
  case Instruction::AddrSpaceCast: {
    Type *SrcTy = I->getOperand(0)->getType();
    return TTI->getCastInstrCost(I->getOpcode(), I->getType(), SrcTy);
  }
  case Instruction::ExtractElement: {
    const ExtractElementInst * EEI = cast<ExtractElementInst>(I);
    ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
    unsigned Idx = -1;
    if (CI)
      Idx = CI->getZExtValue();

    // Try to match a reduction sequence (series of shufflevector and vector
    // adds followed by a extractelement).
    unsigned ReduxOpCode;
    Type *ReduxType;

    if (matchVectorSplittingReduction(EEI, ReduxOpCode, ReduxType))
      return TTI->getArithmeticReductionCost(ReduxOpCode, ReduxType, false);
    else if (matchPairwiseReduction(EEI, ReduxOpCode, ReduxType))
      return TTI->getArithmeticReductionCost(ReduxOpCode, ReduxType, true);

    return TTI->getVectorInstrCost(I->getOpcode(),
                                   EEI->getOperand(0)->getType(), Idx);
  }
  case Instruction::InsertElement: {
    const InsertElementInst * IE = cast<InsertElementInst>(I);
    ConstantInt *CI = dyn_cast<ConstantInt>(IE->getOperand(2));
    unsigned Idx = -1;
    if (CI)
      Idx = CI->getZExtValue();
    return TTI->getVectorInstrCost(I->getOpcode(),
                                   IE->getType(), Idx);
  }
  case Instruction::ShuffleVector: {
    const ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
    Type *VecTypOp0 = Shuffle->getOperand(0)->getType();
    unsigned NumVecElems = VecTypOp0->getVectorNumElements();
    SmallVector<int, 16> Mask = Shuffle->getShuffleMask();

    if (NumVecElems == Mask.size()) {
      if (isReverseVectorMask(Mask))
        return TTI->getShuffleCost(TargetTransformInfo::SK_Reverse, VecTypOp0,
                                   0, nullptr);
      if (isAlternateVectorMask(Mask))
        return TTI->getShuffleCost(TargetTransformInfo::SK_SELECT,
                                   VecTypOp0, 0, nullptr);

      if (isZeroEltBroadcastVectorMask(Mask))
        return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast,
                                   VecTypOp0, 0, nullptr);

      if (isSingleSourceVectorMask(Mask))
        return TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc,
                                   VecTypOp0, 0, nullptr);

      return TTI->getShuffleCost(TargetTransformInfo::SK_PermuteTwoSrc,
                                 VecTypOp0, 0, nullptr);
    }

    return -1;
  }
  case Instruction::Call:
    if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
      SmallVector<Value *, 4> Args;
      for (unsigned J = 0, JE = II->getNumArgOperands(); J != JE; ++J)
        Args.push_back(II->getArgOperand(J));

      FastMathFlags FMF;
      if (auto *FPMO = dyn_cast<FPMathOperator>(II))
        FMF = FPMO->getFastMathFlags();

      return TTI->getIntrinsicInstrCost(II->getIntrinsicID(), II->getType(),
                                        Args, FMF);
    }
    return -1;
  default:
    // We don't have any information on this instruction.
    return -1;
  }
}

void CostModelAnalysisDummy::print(raw_ostream &OS, const Module*) const {
  if (!F)
    return;

  for (BasicBlock &B : *F) {
    for (Instruction &Inst : B) {
      unsigned Cost = getInstructionCost(&Inst);
      if (Cost != (unsigned)-1)
        OS << "Cost Model: Found an estimated cost of " << Cost;
      else
        OS << "Cost Model: Unknown cost";

      OS << " for instruction: " << Inst << "\n";
    }
  }
}

标题文件

#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Value.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <iostream>
#include "llvm/IR/LegacyPassManagers.h"

using namespace llvm;


#define CM_NAME "cost-model-sanji"
#define DEBUG_TYPE CM_NAME

    class CostModelAnalysisDummy : public PMDataManager, public FunctionPass, public PMTopLevelManager {

    public:
        static char ID; // Class identification, replacement for typeinfo
        CostModelAnalysisDummy() : FunctionPass(ID), PMDataManager(), PMTopLevelManager(new FPPassManager()), F(nullptr), TTI(nullptr) {
            llvm::initializeCostModelAnalysisDummyPass(
                *PassRegistry::getPassRegistry());
        }

        /// Returns the expected cost of the instruction.
        /// Returns -1 if the cost is unknown.
        /// Note, this method does not cache the cost calculation and it
        /// can be expensive in some cases.
        unsigned getInstructionCost(const Instruction *I) const;
        bool runOnFunction(Function &F) override;

        PMDataManager *getAsPMDataManager() override { return this; }
        Pass *getAsPass() override { return this; }

        PassManagerType getTopLevelPassManagerType() override {
            return PMT_BasicBlockPassManager;
        }

        FPPassManager *getContainedManager(unsigned N) {
            assert(N < PassManagers.size() && "Pass number out of range!");
            FPPassManager *FP = static_cast<FPPassManager *>(PassManagers[N]);
            return FP;
        }
    private:
        void getAnalysisUsage(AnalysisUsage &AU) const override;

        void print(raw_ostream &OS, const Module*) const override;

        /// The function that we analyze.
        Function *F;
        /// Target information.
        const TargetTransformInfo *TTI;
    };

    FunctionPass *createCostModelAnalysisDummyPass();