从包含行和列标题的csv文件中读取networkx图

时间:2014-07-15 10:33:33

标签: python csv networkx

我有一个CSV文件,代表图表的邻接矩阵。但是,该文件的第一行是节点的标签,第一列也是节点的标签。如何将此文件读入networkx图形对象?有没有一个整洁的pythonic方式来做到这一点没有黑客攻击?

到目前为止我的审判:

x = np.loadtxt('file.mtx', delimiter='\t', dtype=np.str)
row_headers = x[0,:]
col_headers = x[:,0]
A = x[1:, 1:]
A = np.array(A, dtype='int')

但当然这并没有解决问题,因为我需要图形创建中节点的标签。

数据示例:

Attribute,A,B,C
A,0,1,1
B,1,0,0
C,1,0,0

Tab是分隔符,而不是逗号。

2 个答案:

答案 0 :(得分:3)

您可以将数据读入结构化数组。可以从x.dtype.names获取标签,然后可以使用nx.from_numpy_matrix生成networkx图:

import numpy as np
import networkx as nx
import matplotlib.pyplot as plt

# read the first line to determine the number of columns
with open('file.mtx', 'rb') as f:
    ncols = len(next(f).split('\t'))

x = np.genfromtxt('file.mtx', delimiter='\t', dtype=None, names=True,
                  usecols=range(1,ncols) # skip the first column
                  )
labels = x.dtype.names

# y is a view of x, so it will not require much additional memory
y = x.view(dtype=('int', len(x.dtype)))

G = nx.from_numpy_matrix(y)
G = nx.relabel_nodes(G, dict(zip(range(ncols-1), labels)))

print(G.edges(data=True))
# [('A', 'C', {'weight': 1}), ('A', 'B', {'weight': 1})]

nx.from_numpy_matrix有一个create_using参数,您可以使用该参数指定您要创建的networkx图表的类型。例如,

G = nx.from_numpy_matrix(y, create_using=nx.DiGraph())

使G成为DiGraph

答案 1 :(得分:2)

这样可行,不确定这是最好的方法:

In [23]:

import pandas as pd
import io
import networkx as nx
temp = """Attribute,A,B,C
A,0,1,1
B,1,0,0
C,1,0,0"""
# for your case just load the csv like you would do, use sep='\t'
df = pd.read_csv(io.StringIO(temp))
df
Out[23]:
  Attribute  A  B  C
0         A  0  1  1
1         B  1  0  0
2         C  1  0  0

In [39]:

G = nx.DiGraph()
for col in df:
    for x in list(df.loc[df[col] == 1,'Attribute']):
        G.add_edge(col,x)

G.edges()
Out[39]:
[('C', 'A'), ('B', 'A'), ('A', 'C'), ('A', 'B')]

In [40]:

nx.draw(G)

enter image description here