我想使用队列将数据从父级传递到通过multiprocessing.Process
启动的子进程。但是,由于父进程使用Python的新asyncio
库,因此队列方法必须是非阻塞的。据我所知,asyncio.Queue
用于任务间通信,不能用于进程间通信。另外,我知道multiprocessing.Queue
具有put_nowait()
和get_nowait()
方法,但实际上我需要协程仍然会阻止当前任务(但不是整个过程)。有没有办法创建包装put_nowait()
/ get_nowait()
的协同程序?另一方面,multiprocessing.Queue
内部使用的线程是否与在同一进程中运行的事件循环完全兼容?
如果没有,我还有其他选择吗?我知道我可以通过使用异步套接字自己实现这样的队列,但我希望我能避免这样......
修改
我还考虑使用管道而不是套接字,但似乎asyncio
与multiprocessing.Pipe()
不兼容。更确切地说,Pipe()
返回Connection
个对象的元组,这些对象不是类文件对象。但是,asyncio.BaseEventLoop
方法add_reader()
/add_writer()
方法和connect_read_pipe()
/connect_write_pipe()
都需要类似文件的对象,因此无法异步读取/写入此类Connection
。相比之下,subprocess
包用作管道的常见文件类对象完全没有问题can easily be used in combination with asyncio
。
更新
我决定进一步探索管道方法:我通过fileno()
检索文件描述符并将其传递给{{1},将Connection
返回的multiprocessing.Pipe()
对象转换为类文件对象}}。最后,我将生成的类似文件的对象传递给事件循环os.fdopen()
/ connect_read_pipe()
。 (如果有人对确切的代码感兴趣,则相关问题上会有一些mailing list discussion。)但是,connect_write_pipe()
该流给了我一个read()
而我没有设法解决这个问题。同时考虑missing support for Windows,我不会再继续这样做了。
答案 0 :(得分:11)
以下是multiprocessing.Queue
对象的实现,可以与asyncio
一起使用。它提供了整个multiprocessing.Queue
接口,添加了coro_get
和coro_put
方法,这些方法可以asyncio.coroutine
用于异步接收/放入队列。实现细节与我的另一个答案的第二个示例基本相同:ThreadPoolExecutor
用于使get / put异步,multiprocessing.managers.SyncManager.Queue
用于在进程之间共享队列。唯一的附加技巧是实现__getstate__
以保持对象可选,尽管使用不可选择的ThreadPoolExecutor
作为实例变量。
from multiprocessing import Manager, cpu_count
from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor
def AsyncProcessQueue(maxsize=0):
m = Manager()
q = m.Queue(maxsize=maxsize)
return _ProcQueue(q)
class _ProcQueue(object):
def __init__(self, q):
self._queue = q
self._real_executor = None
self._cancelled_join = False
@property
def _executor(self):
if not self._real_executor:
self._real_executor = ThreadPoolExecutor(max_workers=cpu_count())
return self._real_executor
def __getstate__(self):
self_dict = self.__dict__
self_dict['_real_executor'] = None
return self_dict
def __getattr__(self, name):
if name in ['qsize', 'empty', 'full', 'put', 'put_nowait',
'get', 'get_nowait', 'close']:
return getattr(self._queue, name)
else:
raise AttributeError("'%s' object has no attribute '%s'" %
(self.__class__.__name__, name))
@asyncio.coroutine
def coro_put(self, item):
loop = asyncio.get_event_loop()
return (yield from loop.run_in_executor(self._executor, self.put, item))
@asyncio.coroutine
def coro_get(self):
loop = asyncio.get_event_loop()
return (yield from loop.run_in_executor(self._executor, self.get))
def cancel_join_thread(self):
self._cancelled_join = True
self._queue.cancel_join_thread()
def join_thread(self):
self._queue.join_thread()
if self._real_executor and not self._cancelled_join:
self._real_executor.shutdown()
@asyncio.coroutine
def _do_coro_proc_work(q, stuff, stuff2):
ok = stuff + stuff2
print("Passing %s to parent" % ok)
yield from q.coro_put(ok) # Non-blocking
item = q.get() # Can be used with the normal blocking API, too
print("got %s back from parent" % item)
def do_coro_proc_work(q, stuff, stuff2):
loop = asyncio.get_event_loop()
loop.run_until_complete(_do_coro_proc_work(q, stuff, stuff2))
@asyncio.coroutine
def do_work(q):
loop.run_in_executor(ProcessPoolExecutor(max_workers=1),
do_coro_proc_work, q, 1, 2)
item = yield from q.coro_get()
print("Got %s from worker" % item)
item = item + 25
q.put(item)
if __name__ == "__main__":
q = AsyncProcessQueue()
loop = asyncio.get_event_loop()
loop.run_until_complete(do_work(q))
输出:
Passing 3 to parent
Got 3 from worker
got 28 back from parent
如您所见,您可以从父进程或子进程同步和异步使用AsyncProcessQueue
。它不需要任何全局状态,并且通过将大部分复杂性封装在一个类中,使用起来比我原来的答案更优雅。
你可能会直接使用套接字获得更好的性能,但是以跨平台的方式工作似乎相当棘手。这样做的好处是可以在多个工作人员中使用,不会要求你自己腌制/捣蛋等。
答案 1 :(得分:4)
遗憾的是,multiprocessing
库并不特别适合与asyncio
一起使用。但是,根据您计划使用multiprocessing
/ multprocessing.Queue
的方式,您可以使用concurrent.futures.ProcessPoolExecutor
完全替换它:
import asyncio
from concurrent.futures import ProcessPoolExecutor
def do_proc_work(stuff, stuff2): # This runs in a separate process
return stuff + stuff2
@asyncio.coroutine
def do_work():
out = yield from loop.run_in_executor(ProcessPoolExecutor(max_workers=1),
do_proc_work, 1, 2)
print(out)
if __name__ == "__main__":
loop = asyncio.get_event_loop()
loop.run_until_complete(do_work())
输出:
3
如果您绝对需要multiprocessing.Queue
,与ProcessPoolExecutor
结合使用时似乎会表现良好:
import asyncio
import time
import multiprocessing
from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor
def do_proc_work(q, stuff, stuff2):
ok = stuff + stuff2
time.sleep(5) # Artificial delay to show that it's running asynchronously
print("putting output in queue")
q.put(ok)
@asyncio.coroutine
def async_get(q):
""" Calls q.get() in a separate Thread.
q.get is an I/O call, so it should release the GIL.
Ideally there would be a real non-blocking I/O-based
Queue.get call that could be used as a coroutine instead
of this, but I don't think one exists.
"""
return (yield from loop.run_in_executor(ThreadPoolExecutor(max_workers=1),
q.get))
@asyncio.coroutine
def do_work(q):
loop.run_in_executor(ProcessPoolExecutor(max_workers=1),
do_proc_work, q, 1, 2)
coro = async_get(q) # You could do yield from here; I'm not just to show that it's asynchronous
print("Getting queue result asynchronously")
print((yield from coro))
if __name__ == "__main__":
m = multiprocessing.Manager()
q = m.Queue() # The queue must be inherited by our worker, it can't be explicitly passed in
loop = asyncio.get_event_loop()
loop.run_until_complete(do_work(q))
输出:
Getting queue result asynchronously
putting output in queue
3
答案 2 :(得分:0)
aiopipe(https://pypi.org/project/aiopipe/)看起来像是砸在这里的头上。
至少对我有帮助。