我正在尝试使用Theano为神经网络实现另一个池功能,期望已经存在的maxpool,例如平均池。
使用this source,已经实现了平均池化,我的代码如下:
随机初始化只是为了测试:
invals = numpy.random.RandomState(1).rand(3,2,5,5)
Theano标量和功能的定义:
pdim = T.scalar('pool dim', dtype='float32')
pool_inp = T.tensor4('pool input', dtype='float32')
pool_sum = TSN.images2neibs(pool_inp, (pdim, pdim))
pool_out = pool_sum.mean(axis=-1)
pool_fun = theano.function([pool_inp, pdim], pool_out, name = 'pool_fun', allow_input_downcast=True)
函数的调用:
pool_dim = 2
temp = pool_fun(invals, pool_dim)
temp.shape = (invals.shape[0], invals.shape[1], invals.shape[2]/pool_dim,
invals.shape[3]/pool_dim)
print ('invals[1,0,:,:]=\n', invals[1,0,:,:])
print ('output[1,0,:,:]=\n',temp[1,0,:,:])
我收到了一个错误:
TypeError: neib_shape[0]=2, neib_step[0]=2 and ten4.shape[2]=5 not consistent
Apply node that caused the error: Images2Neibs{valid}(pool input, MakeVector.0, MakeVector.0)
Inputs shapes: [(3, 2, 5, 5), (2,), (2,)]
Inputs strides: [(200, 100, 20, 4), (4,), (4,)]
Inputs types: [TensorType(float32, 4D), TensorType(float32, vector), TensorType(float32, vector)]
Use the Theano flag 'exception_verbosity=high' for a debugprint of this apply node.
我真的不明白这个错误。很高兴有任何建议如何纠正这个错误或其他汇集技术的例子,在Theano中编程。
谢谢!
编辑:忽略边框,效果很好
pool_sum = TSN.images2neibs(pool_inp, (pdim, pdim), mode='ignore_borders')
invals[1,0,:,:]=
[[ 0.01936696 0.67883553 0.21162812 0.26554666 0.49157316]
[ 0.05336255 0.57411761 0.14672857 0.58930554 0.69975836]
[ 0.10233443 0.41405599 0.69440016 0.41417927 0.04995346]
[ 0.53589641 0.66379465 0.51488911 0.94459476 0.58655504]
[ 0.90340192 0.1374747 0.13927635 0.80739129 0.39767684]]
output[1,0,:,:]=
[[ 0.33142066 0.30330223]
[ 0.42902038 0.64201581]]
答案 0 :(得分:1)
invals
在最后两个维度中具有形状(5, 5)
,但您希望在(2, 2)
个子集上进行合并。这仅适用于忽略边框(即invals
的最后一列和最后一行)。