我有一组大型数组(每个大约600万个元素),我想基本上执行np.digitize但是多个轴。我正在寻找有关如何有效地执行此操作以及如何存储结果的一些建议。
我需要数组A的所有索引(或所有值或掩码),其中数组B的值在一个范围内,而数组C的值在另一个范围内,D在另一个范围内。我想要值,索引或掩码,以便我可以做一些关于每个bin中A数组值的尚未确定的统计信息。我还需要每个bin中的元素数量,但len()
可以做到这一点。
这是我编写的一个看似合理的例子:
import itertools
import numpy as np
A = np.random.random_sample(1e4)
B = (np.random.random_sample(1e4) + 10)*20
C = (np.random.random_sample(1e4) + 20)*40
D = (np.random.random_sample(1e4) + 80)*80
# make the edges of the bins
Bbins = np.linspace(B.min(), B.max(), 10)
Cbins = np.linspace(C.min(), C.max(), 12) # note different number
Dbins = np.linspace(D.min(), D.max(), 24) # note different number
B_Bidx = np.digitize(B, Bbins)
C_Cidx = np.digitize(C, Cbins)
D_Didx = np.digitize(D, Dbins)
a_bins = []
for bb, cc, dd in itertools.product(np.unique(B_Bidx),
np.unique(C_Cidx),
np.unique(D_Didx)):
a_bins.append([(bb, cc, dd), [A[np.bitwise_and((B_Bidx==bb),
(C_Cidx==cc),
(D_Didx==dd))]]])
然而,这使我感到紧张,我将在大型阵列上耗尽内存。
我也可以这样做:
b_inds = np.empty((len(A), 10), dtype=np.bool)
c_inds = np.empty((len(A), 12), dtype=np.bool)
d_inds = np.empty((len(A), 24), dtype=np.bool)
for i in range(10):
b_inds[:,i] = B_Bidx = i
for i in range(12):
c_inds[:,i] = C_Cidx = i
for i in range(24):
d_inds[:,i] = D_Didx = i
# get the A data for the 1,2,3 B,C,D bin
print A[b_inds[:,1] & c_inds[:,2] & d_inds[:,3]]
至少在这里输出是已知且恒定的。
有没有人对如何更聪明地做出更好的想法?还是需要澄清?
根据HYRY的答案,这是我决定采取的路径。
import numpy as np
import pandas as pd
np.random.seed(42)
A = np.random.random_sample(1e7)
B = (np.random.random_sample(1e7) + 10)*20
C = (np.random.random_sample(1e7) + 20)*40
D = (np.random.random_sample(1e7) + 80)*80
# make the edges of the bins we want
Bbins = np.linspace(B.min(), B.max(), 9)
Cbins = np.linspace(C.min(), C.max(), 10) # note different number
Dbins = np.linspace(D.min(), D.max(), 11) # note different number
sA = pd.Series(A)
cB = pd.cut(B, Bbins, include_lowest=True)
cC = pd.cut(C, Cbins, include_lowest=True)
cD = pd.cut(D, Dbins, include_lowest=True)
dat = pd.DataFrame({'A':A, 'cB':cB.labels, 'cC':cC.labels, 'cD':cD.labels})
g = sA.groupby([cB.labels, cC.labels, cD.labels]).indices
# this then gives all the indices that match the group
print g[0,1,2]
# this is all the array A data for that B,C,D bin
print sA[g[0,1,2]]
即使对于大型阵列,这种方法看起来也很快。
答案 0 :(得分:5)
如何在Pandas中使用groupby
。首先修复代码中的一些问题:
import itertools
import numpy as np
np.random.seed(42)
A = np.random.random_sample(1e4)
B = (np.random.random_sample(1e4) + 10)*20
C = (np.random.random_sample(1e4) + 20)*40
D = (np.random.random_sample(1e4) + 80)*80
# make the edges of the bins
Bbins = np.linspace(B.min(), B.max(), 10)
Cbins = np.linspace(C.min(), C.max(), 12) # note different number
Dbins = np.linspace(D.min(), D.max(), 24) # note different number
B_Bidx = np.digitize(B, Bbins)
C_Cidx = np.digitize(C, Cbins)
D_Didx = np.digitize(D, Dbins)
a_bins = []
for bb, cc, dd in itertools.product(np.unique(B_Bidx),
np.unique(C_Cidx),
np.unique(D_Didx)):
a_bins.append([(bb, cc, dd), A[(B_Bidx==bb) & (C_Cidx==cc) & (D_Didx==dd)]])
a_bins[1000]
输出:
[(4, 6, 17), array([ 0.70723863, 0.907611 , 0.46214047])]
以下是Pandas返回相同结果的代码:
import pandas as pd
cB = pd.cut(B, 9)
cC = pd.cut(C, 11)
cD = pd.cut(D, 23)
sA = pd.Series(A)
g = sA.groupby([cB.labels, cC.labels, cD.labels])
g.get_group((3, 5, 16))
输出:
800 0.707239
2320 0.907611
9388 0.462140
dtype: float64
如果要计算每个组的某些统计信息,可以调用g
的方法,例如:
g.mean()
返回:
0 0 0 0.343566
1 0.410979
2 0.700007
3 0.189936
4 0.452566
5 0.565330
6 0.539565
7 0.530867
8 0.568120
9 0.587762
11 0.352453
12 0.484903
13 0.477969
14 0.484328
15 0.467357
...
8 10 8 0.559859
9 0.570652
10 0.656718
11 0.353938
12 0.628980
13 0.372350
14 0.404543
15 0.387920
16 0.742292
17 0.530866
18 0.389236
19 0.628461
20 0.387384
21 0.541831
22 0.573023
Length: 2250, dtype: float64