我有一个自定义内核函数,我正在使用带有SVC的GridSearchCV函数(kernel = my_kernel)。
my_kernel函数使用参数k进行调整,因此我想知道是否可以配置param_grid选项来调整我的自定义内核函数的参数。
例如,可以如下调整RBF内核的gamma参数。我可以为自定义内核提供param_grid = dict(k = k_range)类型的选项吗?
gamma_range = 10. ** np.arange(-5, 4)
param_grid = dict(gamma=gamma_range)
grid = GridSearchCV(SVC(), param_grid=param_grid, cv=StratifiedKFold(y=Y, k=5))
答案 0 :(得分:10)
执行此操作的一种方法是使用Pipeline
,SVC(kernel='precomputed')
并将自定义内核函数包装为sklearn
估算工具(BaseEstimator
和TransformerMixin
的子类))。
例如,sklearn
包含custom kernel function chi2_kernel(X, Y=None, gamma=1.0)
,它计算特征向量X
和Y
的内核矩阵。
此函数采用参数gamma
,最好使用交叉验证进行设置。
我们可以对这个函数的参数进行网格搜索,如下所示:
from __future__ import print_function
from __future__ import division
import sys
import numpy as np
import sklearn
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.cross_validation import train_test_split
from sklearn.datasets import load_digits
from sklearn.grid_search import GridSearchCV
from sklearn.metrics import accuracy_score
from sklearn.metrics.pairwise import chi2_kernel
from sklearn.pipeline import Pipeline
from sklearn.svm import SVC
# Wrapper class for the custom kernel chi2_kernel
class Chi2Kernel(BaseEstimator,TransformerMixin):
def __init__(self, gamma=1.0):
super(Chi2Kernel,self).__init__()
self.gamma = gamma
def transform(self, X):
return chi2_kernel(X, self.X_train_, gamma=self.gamma)
def fit(self, X, y=None, **fit_params):
self.X_train_ = X
return self
def main():
print('python: {}'.format(sys.version))
print('numpy: {}'.format(np.__version__))
print('sklearn: {}'.format(sklearn.__version__))
np.random.seed(0)
# Get some data to evaluate
dataset = load_digits()
X = dataset.data
y = dataset.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33)
# Create a pipeline where our custom predefined kernel Chi2Kernel
# is run before SVC.
pipe = Pipeline([
('chi2', Chi2Kernel()),
('svm', SVC()),
])
# Set the parameter 'gamma' of our custom kernel by
# using the 'estimator__param' syntax.
cv_params = dict([
('chi2__gamma', 10.0**np.arange(-9,4)),
('svm__kernel', ['precomputed']),
('svm__C', 10.0**np.arange(-2,9)),
])
# Do grid search to get the best parameter value of 'gamma'.
model = GridSearchCV(pipe, cv_params, cv=5, verbose=1, n_jobs=-1)
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
acc_test = accuracy_score(y_test, y_pred)
print("Test accuracy: {}".format(acc_test))
print("Best params:")
print(model.best_params_)
if __name__ == '__main__':
main()
输出:
python: 2.7.3 (default, Dec 18 2014, 19:10:20)
[GCC 4.6.3]
numpy: 1.8.0
sklearn: 0.16.1
Fitting 5 folds for each of 143 candidates, totalling 715 fits
[Parallel(n_jobs=-1)]: Done 1 jobs | elapsed: 0.4s
[Parallel(n_jobs=-1)]: Done 50 jobs | elapsed: 2.7s
[Parallel(n_jobs=-1)]: Done 200 jobs | elapsed: 9.8s
[Parallel(n_jobs=-1)]: Done 450 jobs | elapsed: 21.6s
[Parallel(n_jobs=-1)]: Done 701 out of 715 | elapsed: 34.8s remaining: 0.7s
[Parallel(n_jobs=-1)]: Done 715 out of 715 | elapsed: 35.4s finished
Test accuracy: 0.989898989899
Best params:
{'chi2__gamma': 0.01, 'svm__C': 10.0, 'svm__kernel': 'precomputed'}
在您的情况下,只需将chi2_kernel
替换为计算内核矩阵的函数。
答案 1 :(得分:1)
用scikit-learn 0.19,你可以做到
from sklearn.kernel_ridge import KernelRidge
from sklearn.metrics.pairwise import chi2_kernel
reg_kridge=KernelRidge(kernel='chi2')
params_grid={"gamma":np.logspace(0,-4,5)}
reg=GridSearchCV(reg_kridge,params_grid, n_jobs=-1,cv=10,scoring='neg_mean_squared_error')
reg.fit(train, target)
答案 2 :(得分:0)
正如linked question中所述......如何使用auto-sklearn自动参数调整?它是sklearn的直接替代品,并且通常比手动调整的参数更好。