我正在尝试将文件缓冲区下载到5个线程中,但似乎它变得乱码。
from numpy import arange
import requests
from threading import Thread
import urllib2
url = 'http://pymotw.com/2/urllib/index.html'
sizeInBytes = r = requests.head(url, headers={'Accept-Encoding': 'identity'}).headers['content-length']
splitBy = 5
splits = arange(splitBy + 1) * (float(sizeInBytes)/splitBy)
dataLst = []
def bufferSplit(url, idx, splits):
req = urllib2.Request(url, headers={'Range': 'bytes=%d-%d' % (splits[idx], splits[idx+1])})
print {'bytes=%d-%d' % (splits[idx], splits[idx+1])}
dataLst.append(urllib2.urlopen(req).read())
for idx in range(splitBy):
dlth = Thread(target=bufferSplit, args=(url, idx, splits))
dlth.start()
print dataLst
with open('page.html', 'w') as fh:
fh.write(''.join(dataLst))
更新 所以我努力工作并没有取得进展,但是如果我下载jpg它似乎已经损坏了;
from numpy import arange
import os
import requests
import threading
import urllib2
# url ='http://s1.fans.ge/mp3/201109/08/John_Legend_So_High_Remix(fans_ge).mp3'
url = "http://www.nasa.gov/images/content/607800main_kepler1200_1600-1200.jpg"
# url = 'http://pymotw.com/2/urllib/index.html'
sizeInBytes = requests.head(url, headers={'Accept-Encoding': 'identity'}).headers.get('content-length', None)
splitBy = 5
dataLst = []
class ThreadedFetch(threading.Thread):
""" docstring for ThreadedFetch
"""
def __init__(self, url, fileName, splitBy=5):
super(ThreadedFetch, self).__init__()
self.__url = url
self.__spl = splitBy
self.__dataLst = []
self.__fileName = fileName
def run(self):
if not sizeInBytes:
print "Size cannot be determined."
return
splits = arange(self.__spl + 1) * (float(sizeInBytes)/self.__spl)
for idx in range(self.__spl):
req = urllib2.Request(self.__url, headers={'Range': 'bytes=%d-%d' % (splits[idx], splits[idx+1])})
self.__dataLst.append(urllib2.urlopen(req).read())
def getFileData(self):
return ''.join(self.__dataLst)
fileName = url.split('/')[-1]
dl = ThreadedFetch(url, fileName)
dl.start()
dl.join()
content = dl.getFileData()
if content:
with open(fileName, 'w') as fh:
fh.write(content)
print "Finished Writing file %s" % fileName
下面是下载后的图片。
答案 0 :(得分:3)
这是该项目的另一个版本。差异:
线程代码是一个小函数
每个线程下载一个块,然后将其存储在全局线程安全词典中
线程已启动,然后join()
编辑 - 它们全部立即运行
完成所有操作后,数据按正确顺序重新组装,然后写入磁盘
额外打印,以验证一切正确
计算输出文件大小,以进行额外比较
import os, requests
import threading
import urllib2
import time
URL = "http://www.nasa.gov/images/content/607800main_kepler1200_1600-1200.jpg"
def buildRange(value, numsplits):
lst = []
for i in range(numsplits):
if i == 0:
lst.append('%s-%s' % (i, int(round(1 + i * value/(numsplits*1.0) + value/(numsplits*1.0)-1, 0))))
else:
lst.append('%s-%s' % (int(round(1 + i * value/(numsplits*1.0),0)), int(round(1 + i * value/(numsplits*1.0) + value/(numsplits*1.0)-1, 0))))
return lst
def main(url=None, splitBy=3):
start_time = time.time()
if not url:
print "Please Enter some url to begin download."
return
fileName = url.split('/')[-1]
sizeInBytes = requests.head(url, headers={'Accept-Encoding': 'identity'}).headers.get('content-length', None)
print "%s bytes to download." % sizeInBytes
if not sizeInBytes:
print "Size cannot be determined."
return
dataDict = {}
# split total num bytes into ranges
ranges = buildRange(int(sizeInBytes), splitBy)
def downloadChunk(idx, irange):
req = urllib2.Request(url)
req.headers['Range'] = 'bytes={}'.format(irange)
dataDict[idx] = urllib2.urlopen(req).read()
# create one downloading thread per chunk
downloaders = [
threading.Thread(
target=downloadChunk,
args=(idx, irange),
)
for idx,irange in enumerate(ranges)
]
# start threads, let run in parallel, wait for all to finish
for th in downloaders:
th.start()
for th in downloaders:
th.join()
print 'done: got {} chunks, total {} bytes'.format(
len(dataDict), sum( (
len(chunk) for chunk in dataDict.values()
) )
)
print "--- %s seconds ---" % str(time.time() - start_time)
if os.path.exists(fileName):
os.remove(fileName)
# reassemble file in correct order
with open(fileName, 'w') as fh:
for _idx,chunk in sorted(dataDict.iteritems()):
fh.write(chunk)
print "Finished Writing file %s" % fileName
print 'file size {} bytes'.format(os.path.getsize(fileName))
if __name__ == '__main__':
main(URL)
102331 bytes to download.
done: got 3 chunks, total 102331 bytes
--- 0.380599021912 seconds ---
Finished Writing file 607800main_kepler1200_1600-1200.jpg
file size 102331 bytes
答案 1 :(得分:2)
如果有人对可能的改进提出任何建议,我的工作方式如下,非常欢迎你。
import os
import requests
import threading
import urllib2
import time
url = "http://www.nasa.gov/images/content/607800main_kepler1200_1600-1200.jpg"
def buildRange(value, numsplits):
lst = []
for i in range(numsplits):
if i == 0:
lst.append('%s-%s' % (i, int(round(1 + i * value/(numsplits*1.0) + value/(numsplits*1.0)-1, 0))))
else:
lst.append('%s-%s' % (int(round(1 + i * value/(numsplits*1.0),0)), int(round(1 + i * value/(numsplits*1.0) + value/(numsplits*1.0)-1, 0))))
return lst
class SplitBufferThreads(threading.Thread):
""" Splits the buffer to ny number of threads
thereby, concurrently downloading through
ny number of threads.
"""
def __init__(self, url, byteRange):
super(SplitBufferThreads, self).__init__()
self.__url = url
self.__byteRange = byteRange
self.req = None
def run(self):
self.req = urllib2.Request(self.__url, headers={'Range': 'bytes=%s' % self.__byteRange})
def getFileData(self):
return urllib2.urlopen(self.req).read()
def main(url=None, splitBy=3):
start_time = time.time()
if not url:
print "Please Enter some url to begin download."
return
fileName = url.split('/')[-1]
sizeInBytes = requests.head(url, headers={'Accept-Encoding': 'identity'}).headers.get('content-length', None)
print "%s bytes to download." % sizeInBytes
if not sizeInBytes:
print "Size cannot be determined."
return
dataLst = []
for idx in range(splitBy):
byteRange = buildRange(int(sizeInBytes), splitBy)[idx]
bufTh = SplitBufferThreads(url, byteRange)
bufTh.start()
bufTh.join()
dataLst.append(bufTh.getFileData())
content = ''.join(dataLst)
if dataLst:
if os.path.exists(fileName):
os.remove(fileName)
print "--- %s seconds ---" % str(time.time() - start_time)
with open(fileName, 'w') as fh:
fh.write(content)
print "Finished Writing file %s" % fileName
if __name__ == '__main__':
main(url)
这是我工作的第一个裸骨代码,我发现如果我将bufTh
缓冲线程设置为Daemon False,那么进程需要更多时间才能完成。