我正在尝试使用回溯来解决骑士的旅行问题。我认为我的算法应该有效。我已经尝试但我无法弄清楚它为什么不起作用。它导致无限循环。
但是,如果我注释掉了回溯solutionBoard[dst.x][dst.y]=-1;
的行,它就可以了!
我只是不明白为什么!
任何帮助,将不胜感激。
private int solutionBoard[][] = new int [8][8];
// The eight possible moves a knight can make from any given position
private static final Point[] MOVES = new Point[] { new Point(-2, -1),
new Point(-2, 1), new Point(2, -1), new Point(2, 1),
new Point(-1, -2), new Point(-1, 2), new Point(1, -2),
new Point(1, 2) };
private int count = 0;
public KnightsTour_DFS(){
// board is 0- 7
//initialize visited
for(int i =0; i<8;i++){
for(int j = 0; j< 8; j++){
solutionBoard[i][j] = -1;
}
}
solutionBoard[0][0]=count++;
if(findTour(0, 0)){
System.out.println("Tour found!!");
printSolution();
}
}
public boolean findTour(int x, int y){
if(x <0 || y <0 || x>7 || y > 7 ){
return false;
}
if(count == 64){
//we've covered all node
return true;
}
for(int i = 0; i < this.MOVES.length; i++){
Point dst = new Point(x + MOVES[i].x, y + MOVES[i].y);
if(canMove(dst)){
solutionBoard[dst.x][dst.y]=count++;
if(findTour(dst.x, dst.y)){
System.out.println("Solution shown on board\n");
return true;
}
else{
count --;
solutionBoard[dst.x][dst.y]=-1;
}
}
}
return false;
}
private void printSolution() {
System.out.println("Solution shown on board\n");
for (int[] rows : solutionBoard) {
for (int r : rows) {
System.out.printf("%2d ", r);
}
System.out.println();
}
}
public boolean canMove(Point destination){
if(destination.x<0 || destination.y<0 || destination.x>7|| destination.y>7){
return false;
}
if(solutionBoard[destination.x][destination.y] != -1){
//already visited
return false;
}
return true;
}
答案 0 :(得分:5)
您的算法似乎工作正常,可以为较小的问题实例(如5x5或7x7板)产生正确的结果。这似乎是8x8 board is just too big for the brute force /回溯方法。
但是,您可以简化findTour
方法,使其更易于理解和调试:
public boolean findTour(int x, int y, int c) {
solutionBoard[x][y] = c;
if (c == size*size) {
return true;
}
for (Point p : MOVES) {
Point dst = new Point(x + p.x, y + p.y);
if (canMove(dst) && findTour(dst.x, dst.y, c + 1)) {
return true;
}
}
solutionBoard[x][y] = -1;
return false;
}
示例 - findTour(0, 0, 1)
size = 7
的输出(需要将所有代码调整为可变大小!)
1 14 3 38 5 34 7
12 39 10 33 8 37 26
15 2 13 4 25 6 35
40 11 32 9 36 27 44
19 16 21 24 45 48 29
22 41 18 31 28 43 46
17 20 23 42 47 30 49
更好:使用维基百科文章中提到的其他算法之一,例如相当简单的Warnsdorff启发式:"We move the knight so that we always proceed to the square from which the knight will have the fewest onward moves."我们可以通过对动作进行排序来实现这一目标......
public Point[] sortedPoints(final int x, final int y) {
Point[] sorted = Arrays.copyOf(MOVES, MOVES.length);
Arrays.sort(sorted, new Comparator<Point>() {
public int compare(Point p1, Point p2) {
return Integer.signum(nextMoves(p1) - nextMoves(p2));
};
private int nextMoves(Point p) {
Point dst = new Point(x + p.x, y + p.y);
if (canMove(dst)) {
int s = 0;
for (Point m : MOVES) {
Point dst2 = new Point(dst.x + m.x, dst.y + m.y);
if (canMove(dst2)) {
s++;
}
}
return s;
} else {
return 999;
}
}
});
return sorted;
}
...并将后继循环更改为for (Point p : sortedPoints(x, y))
。结果:
size findTour calls without and with heuristic
5x5 76497 25
7x7 8947880 49
8x8 ??? 64
20x20 ??? 400
实际上,对于我尝试的所有尺寸,findTour
方法被称为完全 size^2
次,即它首次尝试巡视,而根本没有回溯。