常见的子串算法:
LCS(x,y) = 1+ LCS(x[0...xi-1],y[0...yj-1] if x[xi]==y[yj]
else 0
现在很好地理解动态编程解决方案。但是我无法弄清楚递归解决方案。如果有多个子串,则上述算法似乎失败。
例如:
x = "LABFQDB" and y = "LABDB"
应用上述算法
1+ (x= "LABFQD" and y = "LABD")
1+ (x= "LABFQ" and y = "LAB")
return 0 since 'Q'!='B'
返回的值是2,我应该是3?
有人可以指定递归解决方案吗?
答案 0 :(得分:0)
long max_sub(int i, int j)
{
if(i<0 or j<0)
return 0;
if(s[i]==p[j])
{
if(dp[i][j]==-1)
dp[i][j]=1+max_sub(i-1,j-1);
}
else
{
dp[i][j] = 0;
}
if(i-1>=0 and dp[i-1][j]==-1)
max_sub(i-1, j);
if(j-1>=0 and dp[i][j-1]==-1)
max_sub(i, j-1);
return dp[i][j];
}
问题与您的代码似乎您没有尝试所有n ^ 2种可能性。
答案 1 :(得分:0)
package algo.dynamic;
公共类LongestCommonSubstring {
public static void main(String[] args) {
String a = "LABFQDB";
String b = "LABDB";
int maxLcs = lcs(a.toCharArray(), b.toCharArray(), a.length(), b.length(), 0);
System.out.println(maxLcs);
}
private static int lcs(char[] a, char[] b, int i, int j, int count) {
if (i == 0 || j == 0)
return count;
if (a[i - 1] == b[j - 1]) {
count = lcs(a, b, i - 1, j - 1, count + 1);
}
count = Math.max(count, Math.max(lcs(a, b, i, j - 1, 0), lcs(a, b, i - 1, j, 0)));
return count;
}
}
答案 2 :(得分:0)
我为此用c ++设计了一个递归解决方案。在我的方法中,我采用一个特定的i,j,然后如果它们相等,则将1加1并调用i + 1,j + 1的函数,而如果它们不相等,则在相应的i处存储零。 ,我创建的2D数组中的j。执行完后,我正在打印2D数组,这似乎还可以。当我只是填充2D数组时,我认为时间复杂度必须为O(mn),其中m是一个数组的长度,n是另一个数组的长度。
//Finding longestcommonsubword using top down approach [memoization]
#include<iostream>
using namespace std;
int findlength(char A[], char B[], int i, int j, int st[][5], int r, int c){
if(r <= i)
return 0;
else if(c <= j)
return 0;
else{
if(A[i] == B[j]){
if(st[i][j] == -1)
st[i][j] = 1+findlength(A, B, i+1, j+1, st, r, c);
}else{
st[i][j] = 0;
int a = findlength(A, B, i, j+1, st, r, c);
int b = findlength(A, B, i+1, j, st, r, c);
}
}
return st[i][j];
}
int main(){
int n,m;
cin>>n>>m;
char A[n],B[m];
for(int i = 0;i < n;i++)
cin>>A[i];
for(int j = 0;j < m;j++)
cin>>B[j];
int st[n][5];
for(int k = 0; k < n;k++){
for(int l = 0; l< 5;l++){
st[k][l] = -1;
}
}
findlength(A, B, 0, 0, st, n, 5);
for(int k = 0; k < n;k++){
for(int l = 0; l< 5;l++){
cout<<st[k][l]<<" ";
}
cout<<endl;
}
return 0;
}
答案 3 :(得分:0)
import sun.jvm.hotspot.types.CIntegerType;
class RespObject {
public int len;
public boolean isSubString;
int maxLen;
public RespObject(int len, boolean isSubString, int maxLen) {
this.maxLen = maxLen;
this.len = len;
this.isSubString = isSubString;
}
}
public class LongestCommonSubstring {
public static void longestCommonSubstring(String str1, String str2, int i, int j, RespObject resp) {
if ((j == str2.length()) || (i == str1.length())) {
resp.isSubString = false;
resp.len = 0;
return;
}
int currLen = 0;
longestCommonSubstring(str1, str2, i + 1, j, resp);
RespObject respObject1 = resp;
longestCommonSubstring(str1, str2, i, j + 1, resp);
RespObject respObject2 = resp;
if (str1.charAt(i) == str2.charAt(j)) {
longestCommonSubstring(str1, str2, i + 1, j + 1, resp);
resp.len += 1;
currLen = resp.len;
resp.isSubString = true;
} else {
resp.len = 0;
resp.isSubString = false;
}
resp.maxLen = Integer.max(Integer.max(respObject1.maxLen, respObject2.maxLen), currLen);
}
public static void main(String[] args) {
RespObject respObject = new RespObject(0, false, Integer.MIN_VALUE);
longestCommonSubstring("dSite:Geeksf", "wSite:GeeksQ", 0, 0, respObject);
System.out.println(respObject.len + " " + String.valueOf(respObject.isSubString) + " " + respObject.maxLen);
}
}
答案 4 :(得分:0)
尝试避免造成任何混乱,您要问的是longest common substring
,而不是longest common subsequence
,它们很相似,但是have differences。
The recursive method for finding longest common substring is:
Given A and B as two strings, let m as the last index for A, n as the last index for B.
if A[m] == B[n] increase the result by 1.
if A[m] != B[n] :
compare with A[m -1] and B[n] or
compare with A[m] and B[n -1]
with result reset to 0.
以下是未应用备注的代码,以更好地说明算法。
public int lcs(int[] A, int[] B, int m, int n, int res) {
if (m == -1 || n == -1) {
return res;
}
if (A[m] == B[n]) {
res = lcs(A, B, m - 1, n - 1, res + 1);
}
return max(res, max(lcs(A, B, m, n - 1, 0), lcs(A, B, m - 1, n, 0)));
}
public int longestCommonSubString(int[] A, int[] B) {
return lcs(A, B, A.length - 1, B.length - 1, 0);
}
答案 5 :(得分:0)
以下是最长的公共订阅的递归代码:
int LCS(string str1, string str2, int n, int m, int count)
{
if (n==0 || m==0)
return count;
if (str1[n-1] == str2[m-1])
return LCS(str1, str2, n-1, m-1, count+1);
return max(count, max(LCS(str1, str2, n-1, m, 0), LCS(str1, str2, n, m-1, 0)));
}
答案 6 :(得分:0)
int max; //This gloabal variable stores max substring length
int[][]dp; // 2D Array for Memoization
void main(){
//--------Main method just intended to demonstrate initialization---------
dp = new int[m+1][n+1] //m and n are string length
lcs(String a,String b,int n,int m)
}
//---++++++++-----Recrsive Memoized Function------++++++++++++-------
static int lcs(String a,String b,int n,int m){
if(dp[n][m]!=-1)return dp[n][m];
if(n==0||m==0)return dp[n][m]=0;
if(a.charAt(n-1)==b.charAt(m-1))
{
int res=0;int i=n-1,j=m-1;
while((i>=0&&j>=0)&&a.charAt(i)==b.charAt(j)){
res++;
if(i==0||j==0)return dp[n][m] = Math.max(res,max);
i--;j--;
}
max=Math.max(res,max);
return dp[n][m]=Math.max(max,Math.max(lcs(a,b,n-res,m),lcs(a,b,n,m-res)));
}
return dp[n][m]=Math.max(lcs(a,b,n-1,m),lcs(a,b,n,m-1));
}
答案 7 :(得分:0)
以下是计算最长公共字符串的递归方法:
public int lcsLength(String x, String y)
{
char[] xc = x.toCharArray();
char[] yc = y.toCharArray();
return lcsLength(xc, xc.length - 1, yc, yc.length - 1, 0);
}
private int lcsLength(char[] xc, int xn, char[] yc, int yn, int currentCsLength)
{
if (xn < 0 || yn < 0) {
return currentCsLength;
}
if (xc[xn] == yc[yn]) {
return lcsLength(xc, xn - 1, yc, yn - 1, currentCsLength + 1);
}
else {
return max(currentCsLength,
max(
lcsLength(xc, xn - 1, yc, yn, 0),
lcsLength(xc, xn, yc, yn - 1, 0)));
}
}
使用此解决方案的缺点是它会为 x 和 y 的相同子字符串重新计算数倍的公共字符串。
此解决方案使用 memoization 技术来避免计算递归中最长公共字符串的数倍。
public int lcsLength(String x, String y)
{
char[] xc = x.toCharArray();
char[] yc = y.toCharArray();
Integer[][] memoization = new Integer[xc.length][yc.length];
return lcsLength(xc, xc.length - 1, yc, yc.length - 1, memoization);
}
private int lcsLength(char[] xc, int xn, char[] yc, int yn, Integer[][] memoization)
{
if (xn < 0 || yn < 0) {
return 0;
}
if (memoization[xn][yn] == null) {
if (xc[xn] == yc[yn]) {
// find out how long this common subsequence is
int i = xn - 1, j = yn - 1, length = 1;
while (i >= 0 && j >= 0 && xc[i] == yc[j]) {
i--;
j--;
length++;
}
memoization[xn][yn] = Math.max(length, lcsLength(xc, xn - length, yc, yn - length, memoization));
}
else {
memoization[xn][yn] = max(
lcsLength(xc, xn - 1, yc, yn, memoization),
lcsLength(xc, xn, yc, yn - 1, memoization));
}
}
return memoization[xn][yn];
}
答案 8 :(得分:-2)
您不理解该算法,因为它不是最长公共子串的算法...
正确的公式是:
LCS(x,y) = 1+ LCS(x[0...xi-1],y[0...yj-1]) if x[xi]==y[yj]
else max(LCS(x[0...xi],y[0...yj-1]), LCS(x[0...xi-1],y[0...yj]))