最长的Common Substring:递归解决方案?

时间:2014-07-03 06:46:41

标签: string algorithm recursion dynamic-programming

常见的子串算法:

LCS(x,y) = 1+ LCS(x[0...xi-1],y[0...yj-1] if x[xi]==y[yj]
           else 0

现在很好地理解动态编程解决方案。但是我无法弄清楚递归解决方案。如果有多个子串,则上述算法似乎失败。

例如:

x = "LABFQDB" and y = "LABDB"

应用上述算法

1+ (x=  "LABFQD" and y = "LABD")
1+ (x=  "LABFQ" and y = "LAB")
return 0 since 'Q'!='B'

返回的值是2,我应该是3?

有人可以指定递归解决方案吗?

9 个答案:

答案 0 :(得分:0)

long max_sub(int i, int j)
{

    if(i<0 or j<0)
        return 0;

    if(s[i]==p[j])
    {
        if(dp[i][j]==-1)
          dp[i][j]=1+max_sub(i-1,j-1);
    }
    else
    {
        dp[i][j] = 0;
    }
    if(i-1>=0 and dp[i-1][j]==-1)
        max_sub(i-1, j);
    if(j-1>=0 and dp[i][j-1]==-1)
        max_sub(i, j-1);
    return dp[i][j];
}

问题与您的代码似乎您没有尝试所有n ^ 2种可能性。

答案 1 :(得分:0)

package algo.dynamic;

公共类LongestCommonSubstring {

public static void main(String[] args) {
    String a = "LABFQDB";
    String b = "LABDB";
    int maxLcs = lcs(a.toCharArray(), b.toCharArray(), a.length(), b.length(), 0);
    System.out.println(maxLcs);
}

private static int lcs(char[] a, char[] b, int i, int j, int count) {
    if (i == 0 || j == 0)
        return count;
    if (a[i - 1] == b[j - 1]) {
        count = lcs(a, b, i - 1, j - 1, count + 1);
    }
    count = Math.max(count, Math.max(lcs(a, b, i, j - 1, 0), lcs(a, b, i - 1, j, 0)));
    return count;
}

}

答案 2 :(得分:0)

我为此用c ++设计了一个递归解决方案。在我的方法中,我采用一个特定的i,j,然后如果它们相等,则将1加1并调用i + 1,j + 1的函数,而如果它们不相等,则在相应的i处存储零。 ,我创建的2D数组中的j。执行完后,我正在打印2D数组,这似乎还可以。当我只是填充2D数组时,我认为时间复杂度必须为O(mn),其中m是一个数组的长度,n是另一个数组的长度。

//Finding longestcommonsubword using top down approach [memoization]
#include<iostream>
using namespace std;

int findlength(char A[], char B[], int i, int j, int st[][5], int r, int c){

if(r <= i)
  return 0;
else if(c <= j)
  return 0;
else{
    if(A[i] == B[j]){

        if(st[i][j] == -1)
        st[i][j] = 1+findlength(A, B, i+1, j+1, st, r, c);
    }else{
        st[i][j] = 0;
        int a = findlength(A, B, i, j+1, st, r, c);
        int b = findlength(A, B, i+1, j, st, r, c);
    }
}    

return st[i][j];
}

int main(){
int n,m;
cin>>n>>m;
char A[n],B[m];

for(int i = 0;i < n;i++)
  cin>>A[i];

for(int j = 0;j < m;j++)
  cin>>B[j];

int st[n][5];


for(int k = 0; k < n;k++){
    for(int l = 0; l< 5;l++){
       st[k][l] = -1;   
    }
}
findlength(A, B, 0, 0, st, n, 5);

for(int k = 0; k < n;k++){
    for(int l = 0; l< 5;l++){
      cout<<st[k][l]<<" ";
    }
    cout<<endl;
}

return 0;
}

答案 3 :(得分:0)

import sun.jvm.hotspot.types.CIntegerType;

class RespObject {
    public int len;
    public boolean isSubString;
    int maxLen;

    public RespObject(int len, boolean isSubString, int maxLen) {
        this.maxLen = maxLen;
        this.len = len;
        this.isSubString = isSubString;
    }
}

public class LongestCommonSubstring {
    public static void longestCommonSubstring(String str1, String str2, int i, int j, RespObject resp) {
        if ((j == str2.length()) || (i == str1.length())) {
            resp.isSubString = false;
            resp.len = 0;
            return;
        }
        int currLen = 0;
        longestCommonSubstring(str1, str2, i + 1, j, resp);
        RespObject respObject1 = resp;
        longestCommonSubstring(str1, str2, i, j + 1, resp);
        RespObject respObject2 = resp;
        if (str1.charAt(i) == str2.charAt(j)) {
            longestCommonSubstring(str1, str2, i + 1, j + 1, resp);
            resp.len += 1;
            currLen = resp.len;
            resp.isSubString = true;
        } else {
            resp.len = 0;
            resp.isSubString = false;
        }
        resp.maxLen = Integer.max(Integer.max(respObject1.maxLen, respObject2.maxLen), currLen);
    }

    public static void main(String[] args) {
        RespObject respObject = new RespObject(0, false, Integer.MIN_VALUE);
        longestCommonSubstring("dSite:Geeksf", "wSite:GeeksQ", 0, 0, respObject);
        System.out.println(respObject.len + "   " + String.valueOf(respObject.isSubString) + "  " + respObject.maxLen);
    }
}

答案 4 :(得分:0)

尝试避免造成任何混乱,您要问的是longest common substring,而不是longest common subsequence,它们很相似,但是have differences

The recursive method for finding longest common substring is:
Given A and B as two strings, let m as the last index for A, n as the last index for B.

    if A[m] == B[n] increase the result by 1.
    if A[m] != B[n] :
      compare with A[m -1] and B[n] or
      compare with A[m] and B[n -1] 
    with result reset to 0.

以下是未应用备注的代码,以更好地说明算法。

   public int lcs(int[] A, int[] B, int m, int n, int res) {
        if (m == -1 || n == -1) {
            return res;
        }
        if (A[m] == B[n]) {
            res = lcs(A, B, m - 1, n - 1, res + 1);
        }
        return max(res, max(lcs(A, B, m, n - 1, 0), lcs(A, B, m - 1, n, 0)));
    }

    public int longestCommonSubString(int[] A, int[] B) {
        return lcs(A, B, A.length - 1, B.length - 1, 0);
    }

答案 5 :(得分:0)

以下是最长的公共订阅的递归代码:

int LCS(string str1, string str2, int n, int m, int count)
{
    if (n==0 || m==0)
        return count;
    if (str1[n-1] == str2[m-1])
        return LCS(str1, str2, n-1, m-1, count+1);
    return max(count, max(LCS(str1, str2, n-1, m, 0), LCS(str1, str2, n, m-1, 0)));
}

答案 6 :(得分:0)

     int max; //This gloabal variable stores max substring length
     int[][]dp; // 2D Array for Memoization

     void main(){
     //--------Main method just intended to demonstrate initialization---------

     dp = new int[m+1][n+1] //m and n are string length
     lcs(String a,String b,int n,int m)
     }
     
     //---++++++++-----Recrsive Memoized Function------++++++++++++-------
     static int lcs(String a,String b,int n,int m){
     
     if(dp[n][m]!=-1)return dp[n][m];
    
     if(n==0||m==0)return dp[n][m]=0;
     
     
     if(a.charAt(n-1)==b.charAt(m-1))
     {
        int res=0;int i=n-1,j=m-1;
        while((i>=0&&j>=0)&&a.charAt(i)==b.charAt(j)){
            res++;
            if(i==0||j==0)return dp[n][m] = Math.max(res,max);
            i--;j--;
        }
        max=Math.max(res,max);
        
        return dp[n][m]=Math.max(max,Math.max(lcs(a,b,n-res,m),lcs(a,b,n,m-res)));
         
     }
     
     return dp[n][m]=Math.max(lcs(a,b,n-1,m),lcs(a,b,n,m-1));
     
     
     
 }

答案 7 :(得分:0)

以下是计算最长公共字符串的递归方法:

public int lcsLength(String x, String y)
{
    char[] xc = x.toCharArray();
    char[] yc = y.toCharArray();

    return lcsLength(xc, xc.length - 1, yc, yc.length - 1, 0);
}

private int lcsLength(char[] xc, int xn, char[] yc, int yn, int currentCsLength)
{
    if (xn < 0 || yn < 0) {
        return currentCsLength;
    }
    if (xc[xn] == yc[yn]) {
        return lcsLength(xc, xn - 1, yc, yn - 1, currentCsLength + 1);
    }
    else {
        return max(currentCsLength,
                max(
                        lcsLength(xc, xn - 1, yc, yn, 0),
                        lcsLength(xc, xn, yc, yn - 1, 0)));
    }
}

使用此解决方案的缺点是它会为 x 和 y 的相同子字符串重新计算数倍的公共字符串。

此解决方案使用 memoization 技术来避免计算递归中最长公共字符串的数倍。

public int lcsLength(String x, String y)
{
    char[] xc = x.toCharArray();
    char[] yc = y.toCharArray();

    Integer[][] memoization = new Integer[xc.length][yc.length];

    return lcsLength(xc, xc.length - 1, yc, yc.length - 1, memoization);
}

private int lcsLength(char[] xc, int xn, char[] yc, int yn, Integer[][] memoization)
{
    if (xn < 0 || yn < 0) {
        return 0;
    }
    if (memoization[xn][yn] == null) {
        if (xc[xn] == yc[yn]) {
            // find out how long this common subsequence is
            int i = xn - 1, j = yn - 1, length = 1;
            while (i >= 0 && j >= 0 && xc[i] == yc[j]) {
                i--;
                j--;
                length++;
            }
            memoization[xn][yn] = Math.max(length, lcsLength(xc, xn - length, yc, yn - length, memoization));
        }
        else {
            memoization[xn][yn] = max(
                    lcsLength(xc, xn - 1, yc, yn, memoization),
                    lcsLength(xc, xn, yc, yn - 1, memoization));
        }
    }

    return memoization[xn][yn];
}

答案 8 :(得分:-2)

您不理解该算法,因为它不是最长公共子串的算法...

正确的公式是:

LCS(x,y) = 1+ LCS(x[0...xi-1],y[0...yj-1]) if x[xi]==y[yj]
           else max(LCS(x[0...xi],y[0...yj-1]), LCS(x[0...xi-1],y[0...yj]))