我正在使用matplotlib绘制两个2D numpy数组(具有相同的尺寸)。我把第一个数组绘制成灰度的彩色图。第二个代表一个光圈,但它是一个不规则的形状(一些像素被勾勒出来,它是一组形成轮廓的水平和垂直线)。我不知道如何要求它绘制第二个数组。该数组由三个数字(0,1和3)组成,我只需要一个值(3)的像素被轮廓化,但我需要轮廓包含这些像素的区域,而不是单独的像素。我需要所有像素的内部保持透明,以便我可以通过它看到灰度色图。
有谁知道如何做到这一点?
答案 0 :(得分:6)
如果我理解正确,这是一个有趣的问题。为了确定您的意思,您希望在像素值为3的所有连续区域周围绘制一条颜色的线。
我认为没有现成的功能,但不要让它阻止我们。我们需要创建自己的功能。
我们可以从创建需要概述的区域的布尔图开始:
import numpy as np
import matplotlib.pyplot as plt
# our image with the numbers 1-3 is in array maskimg
# create a boolean image map which has trues only where maskimg[x,y] == 3
mapimg = (maskimg == 3)
# a vertical line segment is needed, when the pixels next to each other horizontally
# belong to diffferent groups (one is part of the mask, the other isn't)
# after this ver_seg has two arrays, one for row coordinates, the other for column coordinates
ver_seg = np.where(mapimg[:,1:] != mapimg[:,:-1])
# the same is repeated for horizontal segments
hor_seg = np.where(mapimg[1:,:] != mapimg[:-1,:])
# if we have a horizontal segment at 7,2, it means that it must be drawn between pixels
# (2,7) and (2,8), i.e. from (2,8)..(3,8)
# in order to draw a discountinuous line, we add Nones in between segments
l = []
for p in zip(*hor_seg):
l.append((p[1], p[0]+1))
l.append((p[1]+1, p[0]+1))
l.append((np.nan,np.nan))
# and the same for vertical segments
for p in zip(*ver_seg):
l.append((p[1]+1, p[0]))
l.append((p[1]+1, p[0]+1))
l.append((np.nan, np.nan))
# now we transform the list into a numpy array of Nx2 shape
segments = np.array(l)
# now we need to know something about the image which is shown
# at this point let's assume it has extents (x0, y0)..(x1,y1) on the axis
# drawn with origin='lower'
# with this information we can rescale our points
segments[:,0] = x0 + (x1-x0) * segments[:,0] / mapimg.shape[1]
segments[:,1] = y0 + (y1-y0) * segments[:,1] / mapimg.shape[0]
# and now there isn't anything else to do than plot it
plt.plot(segments[:,0], segments[:,1], color=(1,0,0,.5), linewidth=3)
让我们通过生成一些数据并显示它来测试它:
image = np.cumsum(np.random.random((20,20))-.5, axis=1)
maskimg = np.zeros(image.shape, dtype='int')
maskimg[image > 0] = 3
x0 = -1.5
x1 = 1.5
y0 = 2.3
y1 = 3.8
plt.figure()
plt.imshow(maskimg, origin='lower', extent=[x0,x1,y0,y1], cmap=plt.cm.gray, interpolation='nearest')
plt.axis('tight')
之后我们在顶部运行程序,并获得:
如果需要,代码可以更加密集,但现在注释需要占用大量空间。对于大图像,通过查找连续路径来优化图像片段创建可能是明智的。这样可以将绘图点数减少三倍。但是,这样做需要一些不同的代码,这不像这个那么清晰。 (如果会出现评论要求和适当数量的赞成票,我会添加它:)