为slidify生成漂亮的回归表的最佳方法是什么?
---
## Custom Tables
```{r, results = "asis", echo = FALSE}
library(xtable)
OLS <- lm(hp ~ wt, mtcars)
print(xtable(OLS), type="html", html.table.attributes='class=mytable', label ="OLS", digits = 3)
```
<style>
table.mytable {
border: none;
width: 100%;
border-collapse: collapse;
font-size: 45px;
line-height: 50px;
font-family: 'Ubuntu';'Trebuchet MS';
font-weight: bolder;
color: blue;
}
table.mytable tr:nth-child(2n+1) {
/* background: #E8F2FF; */
background: #FFFFFF;
}
</style>
我希望能够更改名称('常数'而不是拦截,'重量'而不是重量),添加观测数量,R平方,F统计等。
谢谢!
答案 0 :(得分:0)
首先,
# Check what's inside your OLS object:
names(OLS)
[1] "coefficients"
[2] "residuals"
[3] "effects"
[4] "rank"
[5] "fitted.values"
[6] "assign"
[7] "qr"
[8] "df.residual"
[9] "xlevels"
[10] "call"
[11] "terms"
[12] "model"
# Look inside coeff:
names(OLS$coeff)
[1] "(Intercept)"
[2] "wt"
# Rename:
names(OLS$coeff) <- c("Constant", "Weight")
# Check the new names:
names(OLS$coeff)
[1] "Constant" "Weight"
其次,可以以类似的方式找到R平方
summary(OLS)
Call:
lm(formula = hp ~ wt, data = mtcars)
Residuals:
Min 1Q Median
-83.430 -33.596 -13.587
3Q Max
7.913 172.030
Coefficients:
Estimate
(Intercept) -1.821
wt 46.160
Std. Error
(Intercept) 32.325
wt 9.625
t value Pr(>|t|)
(Intercept) -0.056 0.955
wt 4.796 4.15e-05
(Intercept)
wt ***
---
Signif. codes:
0 ‘***’ 0.001 ‘**’ 0.01
‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 52.44 on 30 degrees of freedom
Multiple R-squared: 0.4339, Adjusted R-squared: 0.4151
F-statistic: 23 on 1 and 30 DF, p-value: 4.146e-05
您可以str(summary(OLS))
查看更多信息。因此:
summary(OLS)$r.squared
[1] 0.4339488