有人可以解释为什么我使用聚合函数来获得不同的答案来按组计算缺失值吗?此外,是否有更好的方法使用本机R函数按组计算缺失值?
DF <- data.frame(YEAR=c(2000,2000,2000,2001,2001,2001,2001,2002,2002,2002), X=c(1,NA,3,NA,NA,NA,7,8,9,10))
DF
aggregate(X ~ YEAR, data=DF, function(x) { sum(is.na(x)) })
with(DF, aggregate(X, list(YEAR), function(x) { sum(is.na(x)) }))
aggregate(X ~ YEAR, data=DF, function(x) { sum(! is.na(x)) })
with(DF, aggregate(X, list(YEAR), function(x) { sum(! is.na(x)) }))
答案 0 :(得分:13)
?aggregate
处的帮助页面指出公式方法的参数na.action
默认设置为na.omit
。
na.action
:一个函数,指示当数据包含NA
值时应该发生什么。默认设置是忽略给定变量中的缺失值。
将该参数更改为NULL
或na.pass
,以获得您可能期望的结果:
# aggregate(X ~ YEAR, data=DF, function(x) {sum(is.na(x))}, na.action = na.pass)
aggregate(X ~ YEAR, data=DF, function(x) {sum(is.na(x))}, na.action = NULL)
# YEAR X
# 1 2000 1
# 2 2001 3
# 3 2002 0
答案 1 :(得分:-3)
library(dplyr)
library(tidyr)
#say you want to get missing values from group 1
dataframe %>% filter(group = 1 & is.na(another_column))
#missing values from group 2
dataframe %>% filter(group = 2 & is.na(another_column))