我有一个非常简单的Clock
类,它将记录时间,任务量,并允许代码的其他部分调用其静态方法Clock.increment()
,以便用户可以获得有关进度的反馈。但是,多处理为每个进程创建单独的副本,即使我在主进程中初始化类,子进程也无法访问它。这是我的Clock
课程:
class Counter(object):
'''
This counter needs to be initiated
'''
startTime = time.time()
currentProgress = 0
def __init__(self, totalTask):
# self.startTime = time.time()
Counter.totalTask = totalTask
print("Counter initiated")
def increment():
Counter.currentProgress += 1
Counter.expectedTime = ((time.time() - Counter.startTime) / Counter.currentProgress)*(Counter.totalTask - Counter.currentProgress)
print("Progress: "+str(Counter.currentProgress)+" / "+ str(Counter.totalTask) + " : " + str(float(Counter.currentProgress) / float(Counter.totalTask)*100)+"%")
print("Expected finish in: " + str(Counter.expectedTime/3600.0) + " hrs")
increment = staticmethod(increment)
我称之为:
if __name__ == "__main__":
example = [1,2,3,4,5]
counter = Counter(len(example))
p = Pool(processes=2)
p.map(conprintNum, example)
def conprintNum(num):
print(num)
Counter.increment()
这不起作用。我不想将总任务编号手动编码到Clock
课程,但这可能是最后的手段(违反所有良好的编程习惯)。反正我是否可以在并发中使用它?我也试过单身模式,但不是它并没有真正解决问题。
答案 0 :(得分:1)
您可以使用multiprocessing.BaseManager
在所有子流程之间共享Counter
实例:
import time
from functools import partial
from multiprocessing import Pool
from multiprocessing.managers import BaseManager
if __name__ == "__main__":
example = [1,2,3,4,5]
# Create our custom manager, register the Counter object with it,
# start it, and then create our shared Counter instance.
m = BaseManager()
m.register('Counter', Counter)
m.start()
counter = m.Counter(len(example))
p = Pool(processes=2)
# We create a partial so that it's easier to pass the counter instance
# along with every value in our example iterable.
func = partial(conprintNum, counter)
p.map(func, example)
输出:
Counter initiated
1
Progress: 1 / 5 : 20.0%
Expected finish in: 4.0926668379e-05 hrs
2
Progress: 2 / 5 : 40.0%
Expected finish in: 1.61524613698e-05 hrs
3
Progress: 3 / 5 : 60.0%
Expected finish in: 7.86887274848e-06 hrs
4
Progress: 4 / 5 : 80.0%
Expected finish in: 3.15326783392e-06 hrs
5
Progress: 5 / 5 : 100.0%
Expected finish in: 0.0 hrs
修改强>
正如评论中所指出的,这里存在竞争条件,其中多个进程可以立即进入increment
方法,导致输出不按您希望的方式显示。如果我们在sleep
中添加increment
调用,则可以更清楚地看到这一点:
def increment():
Counter.currentProgress += 1
time.sleep(random.randint(1,6)) # Artificially delay execution.
Counter.expectedTime = ((time.time() - Counter.startTime) / Counter.currentProgress)*(Counter.totalTask - Counter.currentProgress)
print("Progress: "+str(Counter.currentProgress)+" / "+ str(Counter.totalTask) + " : " + str(float(Counter.currentProgress) / float(Counter.totalTask)*100)+"%")
print("Expected finish in: " + str(Counter.expectedTime/3600.0) + " hrs")
现在,你得到这样的输出:
Counter initiated
1
2
3
4
Progress: 4 / 5 : 80.0%
Expected finish in: 7.12237589889e-05 hrs
Progress: 4 / 5 : 80.0%
Expected finish in: 7.15903441111e-05 hrs
5
Progress: 5 / 5 : 100.0%
Expected finish in: 0.0 hrs
Progress: 5 / 5 : 100.0%
Expected finish in: 0.0 hrs
Progress: 5 / 5 : 100.0%
Expected finish in: 0.0 hrs
显然这并不好。但是,通过调用Lock
块内的增量来轻松避免这种情况:
def conprintNum(counter, lock, num):
print(num)
with lock:
counter.increment()
if __name__ == "__main__":
example = [1,2,3,4,5]
m = SyncManager() # SyncManager, rather than BaseManager
m.register('Counter', Counter)
m.start()
lock = m.Lock() # SyncManager comes with a shared Lock implementation.
counter = m.Counter(len(example))
p = Pool(processes=4)
func = partial(conprintNum, counter, lock)
p.map(func, example)