希望这是一个允许的SO问题,但我希望得到一些建议,如何转换下面的代码来处理文件中的行,以生成一个使用生成器和产量的数据帧,因为这个实现使用list和append太慢了。
这是我提出的解决方案,但我真的希望避免使用非常慢的列表并追加操作。我希望有一个很酷的发电机和产量解决方案,但还不够舒适,而且还在使用发电机。
文件中的示例行:
"USNC3255","27","US","NC","LANDS END","72305006","KNJM","KNCA","KNKT","T72305006","","","NCC031","NCZ095","","545","28594","America/New_York","34.65266","-77.07661","7","RDU","893727","
"USNC3256","27","US","NC","LANDSDOWN","72314058","KEHO","KAKH","KIPJ","T72314058","","","NCC045","NCZ068","sc007","517","28150","America/New_York","35.29374","-81.46537","797","CLT","317845","
当前解决方案:
def parse_file(filename):
newline = []
with open(filename, 'rb') as f:
reader = csv.reader(f, quoting=csv.QUOTE_NONE)
for row in reader:
newline.append([s.strip('"') for s in row[:-1]])
df = pd.DataFrame(newline)
df = df.applymap(lambda x: nan if len(x) == 0 else x).astype(object)
return df
df = parse_file(filename)
输出只是一个包含23列和两行的数据帧(如果用于上面的采样行)。
答案 0 :(得分:3)
您的文件唯一的问题是每行都以,"
结尾。这会使解析器混淆。如果您可以删除尾随的逗号和引号,则可以使用常规解析器。
import pandas as pd
from StringIO import StringIO
with open('example.txt') as myfile:
data = myfile.read().replace(',"\n', '\n')
pd.read_csv(StringIO(data), header=None)
这就是我得到的:
0 1 2 3 4 5 6 7 8 9 \
0 USNC3255 27 US NC LANDS END 72305006 KNJM KNCA KNKT T72305006
1 USNC3256 27 US NC LANDSDOWN 72314058 KEHO KAKH KIPJ T72314058
... 13 14 15 16 17 18 19 \
0 ... NCZ095 NaN 545 28594 America/New_York 34.65266 -77.07661
1 ... NCZ068 sc007 517 28150 America/New_York 35.29374 -81.46537
20 21 22
0 7 RDU 893727
1 797 CLT 317845
[2 rows x 23 columns]