我的数据集目前是20个问题的一组答案,有300个观察结果。
每个问题都标有q1,q2,q3等等。
每次观察都会产生1到10的反应。
以下代码就是我所拥有的。我想要的是当计数器在R中改变时q1会改变。
totaltenq1 <- sum(UpdatedQualtrix$tenq1)
totalnineq1 <- sum(UpdatedQualtrix$nineq1)
totaleightq1 <- sum(UpdatedQualtrix$eightq1)
totalsevenq1 <- sum(UpdatedQualtrix$sevenq1)
totalsixq1 <- sum(UpdatedQualtrix$sixq1)
totalfiveq1 <- sum(UpdatedQualtrix$fiveq1)
totalfourq1 <- sum(UpdatedQualtrix$fourq1)
totalthreeq1 <- sum(UpdatedQualtrix$threeq1)
totaltwoq1 <- sum(UpdatedQualtrix$twoq1)
totaloneq1 <- sum(UpdatedQualtrix$oneq1)
totaltenq2 <- sum(UpdatedQualtrix$tenq2)
totalnineq2 <- sum(UpdatedQualtrix$nineq2)
totaleightq2 <- sum(UpdatedQualtrix$eightq2)
totalsevenq2 <- sum(UpdatedQualtrix$sevenq2)
totalsixq2 <- sum(UpdatedQualtrix$sixq2)
totalfiveq2 <- sum(UpdatedQualtrix$fiveq2)
totalfourq2 <- sum(UpdatedQualtrix$fourq2)
totalthreeq2 <- sum(UpdatedQualtrix$threeq2)
totaltwoq2 <- sum(UpdatedQualtrix$twoq2)
totaloneq2 <- sum(UpdatedQualtrix$oneq2)
我想要的代码是
count = 20
for (i in 1:count){
totaltenq(i) <- sum(UpdatedQualtrix$tenq(i)
totalninq(I) <- sum(UpdatedQuatlrix$nineq(I)
etc
}
这样,当我将来再次这样做时,我可以告诉R下次有多少问题,它会改变它。这样,我没有10,000行代码来复制和粘贴我的代码20次。
答案 0 :(得分:2)
我认为你根本不需要任何循环。这完全取决于您希望如何存储这些值。我不喜欢没有必要的变量。
这是一些示例数据。我只需要制作10行(观察),值为1-5。
set.seed(15)
Q<-3
numbs<-c("one","two","three","four","five","six","seven","eight","nine","ten")
qs<-paste0("q",1:Q)
qnumbs <- outer(numbs, qs, paste0)
UpdatedQualtrix <-data.frame(ID=1:10,
matrix(sample(1:5, 10*length(numbs)*Q, replace=T), nrow=10))
colnames(UpdatedQualtrix) <- c("ID",qnumbs)
现在我可以用
总结每一列( Qsums<-colSums(UpdatedQualtrix[, qnumbs]) )
# oneq1 twoq1 threeq1 fourq1 fiveq1 sixq1 sevenq1 eightq1 nineq1 tenq1
# 37 35 29 26 32 39 40 33 40 26
# oneq2 twoq2 threeq2 fourq2 fiveq2 sixq2 sevenq2 eightq2 nineq2 tenq2
# 37 31 19 29 25 38 36 35 28 27
# oneq3 twoq3 threeq3 fourq3 fiveq3 sixq3 sevenq3 eightq3 nineq3 tenq3
# 37 30 31 31 24 31 29 31 25 41
如果我们想要每个问题的总数我们可以做
sapply(qs, function(a, b) sum(Qsums[paste0(b,a)]), b=numbs)
# q1 q2 q3
# 337 305 310
或者,如果我们想要每个响应的计数,我们可以做
sapply(numbs, function(a, b) sum(Qsums[paste0(a,b)]), b=qs)
# one two three four five six seven eight nine ten
# 111 96 79 86 81 108 105 99 93 94
您可能还想考虑融化您的数据,因为它是如此结构化。您可以使用reshape2
库来提供帮助。你可以做到
require(reshape2)
mm <- melt(UpdatedQualtrix, id.vars="ID")
mm <- cbind(mm[,-2], colsplit(mm$variable, "q", c("resp","q")))
mm$resp <- factor(mm$resp, levels=numbs)
将您的数据转换为“高”格式,以便每个值都有自己的行,其中包含ID,值,响应和问题的列。
str(mm)
# 'data.frame': 300 obs. of 4 variables:
# $ ID : int 1 2 3 4 5 6 7 8 9 10 ...
# $ value: int 4 1 5 4 2 5 5 2 4 5 ...
# $ resp : Factor w/ 10 levels "one","two","three",..: 1 1 1 1 1 1 1 1 1 1 ...
# $ q : int 1 1 1 1 1 1 1 1 1 1 ...
然后我们可以更轻松地进行其他计算。你想要的总得分,你可以做
aggregate(value~q, mm, sum)
# q value
# 1 1 337
# 2 2 305
# 3 3 310
如果您想要每个问题/答案的平均值,那么
with(mm, tapply(value, list(q,resp), mean))
# one two three four five six seven eight nine ten
# 1 3.7 3.5 2.9 2.6 3.2 3.9 4.0 3.3 4.0 2.6
# 2 3.7 3.1 1.9 2.9 2.5 3.8 3.6 3.5 2.8 2.7
# 3 3.7 3.0 3.1 3.1 2.4 3.1 2.9 3.1 2.5 4.1