当突变是有条件的(取决于某些列值的值)时,是否可以使用mutate?
此示例有助于显示我的意思。
structure(list(a = c(1, 3, 4, 6, 3, 2, 5, 1), b = c(1, 3, 4,
2, 6, 7, 2, 6), c = c(6, 3, 6, 5, 3, 6, 5, 3), d = c(6, 2, 4,
5, 3, 7, 2, 6), e = c(1, 2, 4, 5, 6, 7, 6, 3), f = c(2, 3, 4,
2, 2, 7, 5, 2)), .Names = c("a", "b", "c", "d", "e", "f"), row.names = c(NA,
8L), class = "data.frame")
a b c d e f
1 1 1 6 6 1 2
2 3 3 3 2 2 3
3 4 4 6 4 4 4
4 6 2 5 5 5 2
5 3 6 3 3 6 2
6 2 7 6 7 7 7
7 5 2 5 2 6 5
8 1 6 3 6 3 2
我希望使用dplyr软件包找到我的问题的解决方案(是的,我知道这不是可行的代码,但我想它的目的很明确)用于创建新列g:
library(dplyr)
df <- mutate(df,
if (a == 2 | a == 5 | a == 7 | (a == 1 & b == 4)){g = 2},
if (a == 0 | a == 1 | a == 4 | a == 3 | c == 4) {g = 3})
我正在寻找的代码的结果应该在这个特定的例子中得到这个结果:
a b c d e f g
1 1 1 6 6 1 2 3
2 3 3 3 2 2 3 3
3 4 4 6 4 4 4 3
4 6 2 5 5 5 2 NA
5 3 6 3 3 6 2 NA
6 2 7 6 7 7 7 2
7 5 2 5 2 6 5 2
8 1 6 3 6 3 2 3
有没有人知道如何在dplyr中执行此操作?这个数据框只是一个例子,我正在处理的数据框要大得多。由于它的速度,我试图使用dplyr,但也许有其他更好的方法来处理这个问题?
答案 0 :(得分:180)
使用ifelse
df %>%
mutate(g = ifelse(a == 2 | a == 5 | a == 7 | (a == 1 & b == 4), 2,
ifelse(a == 0 | a == 1 | a == 4 | a == 3 | c == 4, 3, NA)))
已添加 - if_else:请注意,在dplyr 0.5中定义了if_else
个功能,因此替代方法是将ifelse
替换为if_else
;但请注意,由于if_else
比ifelse
更严格(条件的两条腿必须具有相同的类型),因此在这种情况下NA
必须替换为NA_real_
}。
df %>%
mutate(g = if_else(a == 2 | a == 5 | a == 7 | (a == 1 & b == 4), 2,
if_else(a == 0 | a == 1 | a == 4 | a == 3 | c == 4, 3, NA_real_)))
已添加 - case_when 自此问题发布以来,dplyr已添加case_when
,因此另一种选择是:
df %>% mutate(g = case_when(a == 2 | a == 5 | a == 7 | (a == 1 & b == 4) ~ 2,
a == 0 | a == 1 | a == 4 | a == 3 | c == 4 ~ 3,
TRUE ~ NA_real_))
答案 1 :(得分:52)
由于您要求其他更好的方法来处理问题,这是使用data.table
的另一种方式:
require(data.table) ## 1.9.2+
setDT(df)
df[a %in% c(0,1,3,4) | c == 4, g := 3L]
df[a %in% c(2,5,7) | (a==1 & b==4), g := 2L]
请注意,条件语句的顺序相反,才能正确获取g
。即使在第二次分配期间,也没有g
的副本 - 它已被替换为就地。
在较大的数据上,这比使用嵌套的 if-else
更好,如it can evaluate both 'yes' and 'no' cases,并且嵌套可能会更难以阅读/维护恕我直言。
以下是相对较大数据的基准:
# R version 3.1.0
require(data.table) ## 1.9.2
require(dplyr)
DT <- setDT(lapply(1:6, function(x) sample(7, 1e7, TRUE)))
setnames(DT, letters[1:6])
# > dim(DT)
# [1] 10000000 6
DF <- as.data.frame(DT)
DT_fun <- function(DT) {
DT[(a %in% c(0,1,3,4) | c == 4), g := 3L]
DT[a %in% c(2,5,7) | (a==1 & b==4), g := 2L]
}
DPLYR_fun <- function(DF) {
mutate(DF, g = ifelse(a %in% c(2,5,7) | (a==1 & b==4), 2L,
ifelse(a %in% c(0,1,3,4) | c==4, 3L, NA_integer_)))
}
BASE_fun <- function(DF) { # R v3.1.0
transform(DF, g = ifelse(a %in% c(2,5,7) | (a==1 & b==4), 2L,
ifelse(a %in% c(0,1,3,4) | c==4, 3L, NA_integer_)))
}
system.time(ans1 <- DT_fun(DT))
# user system elapsed
# 2.659 0.420 3.107
system.time(ans2 <- DPLYR_fun(DF))
# user system elapsed
# 11.822 1.075 12.976
system.time(ans3 <- BASE_fun(DF))
# user system elapsed
# 11.676 1.530 13.319
identical(as.data.frame(ans1), as.data.frame(ans2))
# [1] TRUE
identical(as.data.frame(ans1), as.data.frame(ans3))
# [1] TRUE
不确定这是否是您要求的替代品,但我希望它有所帮助。
答案 2 :(得分:33)
dplyr现在有一个函数case_when
,它提供了vectorised if。与mosaic:::derivedFactor
相比,语法有点奇怪,因为您无法以标准dplyr方式访问变量,并且需要声明NA的模式,但它比mosaic:::derivedFactor
快得多。
df %>%
mutate(g = case_when(a %in% c(2,5,7) | (a==1 & b==4) ~ 2L,
a %in% c(0,1,3,4) | c == 4 ~ 3L,
TRUE~as.integer(NA)))
编辑:如果您使用的是版本0.7.0之前的dplyr::case_when()
,那么您需要在变量名称之前添加“.$
”(例如,写入.$a == 1
内的case_when
。
<强>基准强>: 对于基准测试(重用Arun的帖子中的功能)和减少样本量:
require(data.table)
require(mosaic)
require(dplyr)
require(microbenchmark)
DT <- setDT(lapply(1:6, function(x) sample(7, 10000, TRUE)))
setnames(DT, letters[1:6])
DF <- as.data.frame(DT)
DPLYR_case_when <- function(DF) {
DF %>%
mutate(g = case_when(a %in% c(2,5,7) | (a==1 & b==4) ~ 2L,
a %in% c(0,1,3,4) | c==4 ~ 3L,
TRUE~as.integer(NA)))
}
DT_fun <- function(DT) {
DT[(a %in% c(0,1,3,4) | c == 4), g := 3L]
DT[a %in% c(2,5,7) | (a==1 & b==4), g := 2L]
}
DPLYR_fun <- function(DF) {
mutate(DF, g = ifelse(a %in% c(2,5,7) | (a==1 & b==4), 2L,
ifelse(a %in% c(0,1,3,4) | c==4, 3L, NA_integer_)))
}
mosa_fun <- function(DF) {
mutate(DF, g = derivedFactor(
"2" = (a == 2 | a == 5 | a == 7 | (a == 1 & b == 4)),
"3" = (a == 0 | a == 1 | a == 4 | a == 3 | c == 4),
.method = "first",
.default = NA
))
}
microbenchmark(
DT_fun(DT),
DPLYR_fun(DF),
DPLYR_case_when(DF),
mosa_fun(DF),
times=20
)
这给出了:
expr min lq mean median uq max neval
DT_fun(DT) 1.503589 1.626971 2.054825 1.755860 2.292157 3.426192 20
DPLYR_fun(DF) 2.420798 2.596476 3.617092 3.484567 4.184260 6.235367 20
DPLYR_case_when(DF) 2.153481 2.252134 6.124249 2.365763 3.119575 72.344114 20
mosa_fun(DF) 396.344113 407.649356 413.743179 412.412634 416.515742 459.974969 20
答案 3 :(得分:13)
来自derivedFactor
包的mosaic
函数似乎旨在解决此问题。使用此示例,它看起来像:
library(dplyr)
library(mosaic)
df <- mutate(df, g = derivedFactor(
"2" = (a == 2 | a == 5 | a == 7 | (a == 1 & b == 4)),
"3" = (a == 0 | a == 1 | a == 4 | a == 3 | c == 4),
.method = "first",
.default = NA
))
(如果您希望结果是数字而不是因子,则可以derivedFactor
调用as.numeric
。
derivedFactor
也可以用于任意数量的条件。
答案 4 :(得分:11)
case_when
现在是SQL风格案例的一个非常干净的实现:
structure(list(a = c(1, 3, 4, 6, 3, 2, 5, 1), b = c(1, 3, 4,
2, 6, 7, 2, 6), c = c(6, 3, 6, 5, 3, 6, 5, 3), d = c(6, 2, 4,
5, 3, 7, 2, 6), e = c(1, 2, 4, 5, 6, 7, 6, 3), f = c(2, 3, 4,
2, 2, 7, 5, 2)), .Names = c("a", "b", "c", "d", "e", "f"), row.names = c(NA,
8L), class = "data.frame") -> df
df %>%
mutate( g = case_when(
a == 2 | a == 5 | a == 7 | (a == 1 & b == 4 ) ~ 2,
a == 0 | a == 1 | a == 4 | a == 3 | c == 4 ~ 3
))
使用dplyr 0.7.4