矩阵的所有行对的相关系数和p值

时间:2014-06-26 13:39:20

标签: python numpy statistics scipy correlation

我有一个带有 m 行和 n 列的矩阵data。我曾经使用np.corrcoef计算所有行对之间的相关系数:

import numpy as np
data = np.array([[0, 1, -1], [0, -1, 1]])
np.corrcoef(data)

现在我还要看一下这些系数的p值。 np.corrcoef并未提供这些内容; scipy.stats.pearsonr。但是,scipy.stats.pearsonr不接受输入矩阵。

有一种快速的方法可以计算所有行对的系数和p值(通过 m 矩阵到达例如两个 m ,一个相关系数,另一个与相应的p值),而不必手动通过所有对?

6 个答案:

答案 0 :(得分:12)

我今天遇到了同样的问题。

经过半小时的谷歌搜索,我无法在numpy / scipy库中找到任何代码可以帮助我做到这一点。

所以我写了自己的 corrcoef

版本
import numpy as np
from scipy.stats import pearsonr, betai

def corrcoef(matrix):
    r = np.corrcoef(matrix)
    rf = r[np.triu_indices(r.shape[0], 1)]
    df = matrix.shape[1] - 2
    ts = rf * rf * (df / (1 - rf * rf))
    pf = betai(0.5 * df, 0.5, df / (df + ts))
    p = np.zeros(shape=r.shape)
    p[np.triu_indices(p.shape[0], 1)] = pf
    p[np.tril_indices(p.shape[0], -1)] = pf
    p[np.diag_indices(p.shape[0])] = np.ones(p.shape[0])
    return r, p

def corrcoef_loop(matrix):
    rows, cols = matrix.shape[0], matrix.shape[1]
    r = np.ones(shape=(rows, rows))
    p = np.ones(shape=(rows, rows))
    for i in range(rows):
        for j in range(i+1, rows):
            r_, p_ = pearsonr(matrix[i], matrix[j])
            r[i, j] = r[j, i] = r_
            p[i, j] = p[j, i] = p_
    return r, p

第一个版本使用np.corrcoef的结果,然后根据corrcoef矩阵的三角形上限值计算p值。

第二个循环版本只是遍历行,手动执行pearsonr。

def test_corrcoef():
    a = np.array([
        [1, 2, 3, 4],
        [1, 3, 1, 4],
        [8, 3, 8, 5]])

    r1, p1 = corrcoef(a)
    r2, p2 = corrcoef_loop(a)

    assert np.allclose(r1, r2)
    assert np.allclose(p1, p2)

测试通过,它们是一样的。

def test_timing():
    import time
    a = np.random.randn(100, 2500)

    def timing(func, *args, **kwargs):
        t0 = time.time()
        loops = 10
        for _ in range(loops):
            func(*args, **kwargs)
        print('{} takes {} seconds loops={}'.format(
            func.__name__, time.time() - t0, loops))

    timing(corrcoef, a)
    timing(corrcoef_loop, a)


if __name__ == '__main__':
    test_corrcoef()
    test_timing()

我的Macbook对100x2500矩阵的性能

  

corrcoef需要0.06608104705810547秒循环= 10

     

corrcoef_loop需要7.585600137710571秒循环= 10

答案 1 :(得分:9)

最有效的方法可能是.corr中的buildin方法pandas,以获得r:

In [79]:

import pandas as pd
m=np.random.random((6,6))
df=pd.DataFrame(m)
print df.corr()
          0         1         2         3         4         5
0  1.000000 -0.282780  0.455210 -0.377936 -0.850840  0.190545
1 -0.282780  1.000000 -0.747979 -0.461637  0.270770  0.008815
2  0.455210 -0.747979  1.000000 -0.137078 -0.683991  0.557390
3 -0.377936 -0.461637 -0.137078  1.000000  0.511070 -0.801614
4 -0.850840  0.270770 -0.683991  0.511070  1.000000 -0.499247
5  0.190545  0.008815  0.557390 -0.801614 -0.499247  1.000000

使用t检验获得p值:

In [84]:

n=6
r=df.corr()
t=r*np.sqrt((n-2)/(1-r*r))

import scipy.stats as ss
ss.t.cdf(t, n-2)
Out[84]:
array([[ 1.        ,  0.2935682 ,  0.817826  ,  0.23004382,  0.01585695,
         0.64117917],
       [ 0.2935682 ,  1.        ,  0.04363408,  0.17836685,  0.69811422,
         0.50661121],
       [ 0.817826  ,  0.04363408,  1.        ,  0.39783538,  0.06700715,
         0.8747497 ],
       [ 0.23004382,  0.17836685,  0.39783538,  1.        ,  0.84993082,
         0.02756579],
       [ 0.01585695,  0.69811422,  0.06700715,  0.84993082,  1.        ,
         0.15667393],
       [ 0.64117917,  0.50661121,  0.8747497 ,  0.02756579,  0.15667393,
         1.        ]])
In [85]:

ss.pearsonr(m[:,0], m[:,1])
Out[85]:
(-0.28277983892175751, 0.58713640696703184)
In [86]:
#be careful about the difference of 1-tail test and 2-tail test:
0.58713640696703184/2
Out[86]:
0.2935682034835159 #the value in ss.t.cdf(t, n-2) [0,1] cell

您也可以使用OP中提到的scipy.stats.pearsonr

In [95]:
#returns a list of tuples of (r, p, index1, index2)
import itertools
[ss.pearsonr(m[:,i],m[:,j])+(i, j) for i, j in itertools.product(range(n), range(n))]
Out[95]:
[(1.0, 0.0, 0, 0),
 (-0.28277983892175751, 0.58713640696703184, 0, 1),
 (0.45521036266021014, 0.36434799921123057, 0, 2),
 (-0.3779357902414715, 0.46008763115463419, 0, 3),
 (-0.85083961671703368, 0.031713908656676448, 0, 4),
 (0.19054495489542525, 0.71764166168348287, 0, 5),
 (-0.28277983892175751, 0.58713640696703184, 1, 0),
 (1.0, 0.0, 1, 1),
#etc, etc

答案 2 :(得分:4)

一些hackish和可能效率低下的东西,但我认为这可能是你正在寻找的东西:

import scipy.spatial.distance as dist

import scipy.stats as ss

# Pearson's correlation coefficients
print dist.squareform(dist.pdist(data, lambda x, y: ss.pearsonr(x, y)[0]))    

# p-values
print dist.squareform(dist.pdist(data, lambda x, y: ss.pearsonr(x, y)[1]))

Scipy's pdist是一个非常有用的函数,主要用于查找n维空间中观测值之间的成对距离。

但它允许用户定义的可调用距离度量标准,可以利用它来执行任何类型的成对操作。结果以压缩距离矩阵形式返回,可以使用Scipy's 'squareform' function轻松更改为方阵形式。

答案 3 :(得分:1)

如果您不必使用pearson correlation coefficient,则可以使用spearman correlation coefficient,因为它会返回相关矩阵和p值(请注意,前者要求您的数据是正态分布的,而spearman相关是一种非参数测量,因此不假设数据的正态分布)。示例代码:

from scipy import stats
import numpy as np

data = np.array([[0, 1, -1], [0, -1, 1], [0, 1, -1]])
print 'np.corrcoef:', np.corrcoef(data)
cor, pval = stats.spearmanr(data.T)
print 'stats.spearmanr - cor:\n', cor
print 'stats.spearmanr - pval\n', pval

答案 4 :(得分:1)

这与MATLAB中的corrcoef完全一样:

要运行此功能,您需要安装熊猫以及scipy。

# Compute correlation correfficients matrix and p-value matrix
# Similar function as corrcoef in MATLAB
# dframe: pandas dataframe
def corrcoef(dframe):

    fmatrix = dframe.values
    rows, cols = fmatrix.shape

    r = np.ones((cols, cols), dtype=float)
    p = np.ones((cols, cols), dtype=float)

    for i in range(cols):
        for j in range(cols):
            if i == j:
                r_, p_ = 1., 1.
            else:
                r_, p_ = pearsonr(fmatrix[:,i], fmatrix[:,j])

            r[j][i] = r_
            p[j][i] = p_

    return r, p

答案 5 :(得分:0)

这是@CT Zhu 答案的最小版本。我们不需要 pandas,因为相关性可以直接从 numpy 计算,这应该更快,因为我们不需要转换为数据帧的步骤

import numpy as np
import scipy.stats as ss

def corr_significance_two_sided(cc, nData):
    # We will divide by 0 if correlation is exactly 1, but that is no problem
    # We would simply set the test statistic to be infinity if it evaluates to NAN
    with np.errstate(divide='ignore'):
        t = -np.abs(cc) * np.sqrt((nData - 2) / (1 - cc**2))
        t[t == np.nan] = np.inf
        return ss.t.cdf(t, nData - 2) * 2  # multiply by two to get two-sided p-value

x = np.random.uniform(0, 1, (8, 1000))
cc = np.corrcoef(x)
pVal = corr_significance_two_sided(cc, 1000)