我有一个带有 m 行和 n 列的矩阵data
。我曾经使用np.corrcoef
计算所有行对之间的相关系数:
import numpy as np
data = np.array([[0, 1, -1], [0, -1, 1]])
np.corrcoef(data)
现在我还要看一下这些系数的p值。 np.corrcoef
并未提供这些内容; scipy.stats.pearsonr
。但是,scipy.stats.pearsonr
不接受输入矩阵。
有一种快速的方法可以计算所有行对的系数和p值(通过 m 矩阵到达例如两个 m ,一个相关系数,另一个与相应的p值),而不必手动通过所有对?
答案 0 :(得分:12)
我今天遇到了同样的问题。
经过半小时的谷歌搜索,我无法在numpy / scipy库中找到任何代码可以帮助我做到这一点。
所以我写了自己的 corrcoef
版本import numpy as np
from scipy.stats import pearsonr, betai
def corrcoef(matrix):
r = np.corrcoef(matrix)
rf = r[np.triu_indices(r.shape[0], 1)]
df = matrix.shape[1] - 2
ts = rf * rf * (df / (1 - rf * rf))
pf = betai(0.5 * df, 0.5, df / (df + ts))
p = np.zeros(shape=r.shape)
p[np.triu_indices(p.shape[0], 1)] = pf
p[np.tril_indices(p.shape[0], -1)] = pf
p[np.diag_indices(p.shape[0])] = np.ones(p.shape[0])
return r, p
def corrcoef_loop(matrix):
rows, cols = matrix.shape[0], matrix.shape[1]
r = np.ones(shape=(rows, rows))
p = np.ones(shape=(rows, rows))
for i in range(rows):
for j in range(i+1, rows):
r_, p_ = pearsonr(matrix[i], matrix[j])
r[i, j] = r[j, i] = r_
p[i, j] = p[j, i] = p_
return r, p
第一个版本使用np.corrcoef的结果,然后根据corrcoef矩阵的三角形上限值计算p值。
第二个循环版本只是遍历行,手动执行pearsonr。
def test_corrcoef():
a = np.array([
[1, 2, 3, 4],
[1, 3, 1, 4],
[8, 3, 8, 5]])
r1, p1 = corrcoef(a)
r2, p2 = corrcoef_loop(a)
assert np.allclose(r1, r2)
assert np.allclose(p1, p2)
测试通过,它们是一样的。
def test_timing():
import time
a = np.random.randn(100, 2500)
def timing(func, *args, **kwargs):
t0 = time.time()
loops = 10
for _ in range(loops):
func(*args, **kwargs)
print('{} takes {} seconds loops={}'.format(
func.__name__, time.time() - t0, loops))
timing(corrcoef, a)
timing(corrcoef_loop, a)
if __name__ == '__main__':
test_corrcoef()
test_timing()
我的Macbook对100x2500矩阵的性能
corrcoef需要0.06608104705810547秒循环= 10
corrcoef_loop需要7.585600137710571秒循环= 10
答案 1 :(得分:9)
最有效的方法可能是.corr
中的buildin方法pandas
,以获得r:
In [79]:
import pandas as pd
m=np.random.random((6,6))
df=pd.DataFrame(m)
print df.corr()
0 1 2 3 4 5
0 1.000000 -0.282780 0.455210 -0.377936 -0.850840 0.190545
1 -0.282780 1.000000 -0.747979 -0.461637 0.270770 0.008815
2 0.455210 -0.747979 1.000000 -0.137078 -0.683991 0.557390
3 -0.377936 -0.461637 -0.137078 1.000000 0.511070 -0.801614
4 -0.850840 0.270770 -0.683991 0.511070 1.000000 -0.499247
5 0.190545 0.008815 0.557390 -0.801614 -0.499247 1.000000
使用t检验获得p值:
In [84]:
n=6
r=df.corr()
t=r*np.sqrt((n-2)/(1-r*r))
import scipy.stats as ss
ss.t.cdf(t, n-2)
Out[84]:
array([[ 1. , 0.2935682 , 0.817826 , 0.23004382, 0.01585695,
0.64117917],
[ 0.2935682 , 1. , 0.04363408, 0.17836685, 0.69811422,
0.50661121],
[ 0.817826 , 0.04363408, 1. , 0.39783538, 0.06700715,
0.8747497 ],
[ 0.23004382, 0.17836685, 0.39783538, 1. , 0.84993082,
0.02756579],
[ 0.01585695, 0.69811422, 0.06700715, 0.84993082, 1. ,
0.15667393],
[ 0.64117917, 0.50661121, 0.8747497 , 0.02756579, 0.15667393,
1. ]])
In [85]:
ss.pearsonr(m[:,0], m[:,1])
Out[85]:
(-0.28277983892175751, 0.58713640696703184)
In [86]:
#be careful about the difference of 1-tail test and 2-tail test:
0.58713640696703184/2
Out[86]:
0.2935682034835159 #the value in ss.t.cdf(t, n-2) [0,1] cell
您也可以使用OP中提到的scipy.stats.pearsonr
:
In [95]:
#returns a list of tuples of (r, p, index1, index2)
import itertools
[ss.pearsonr(m[:,i],m[:,j])+(i, j) for i, j in itertools.product(range(n), range(n))]
Out[95]:
[(1.0, 0.0, 0, 0),
(-0.28277983892175751, 0.58713640696703184, 0, 1),
(0.45521036266021014, 0.36434799921123057, 0, 2),
(-0.3779357902414715, 0.46008763115463419, 0, 3),
(-0.85083961671703368, 0.031713908656676448, 0, 4),
(0.19054495489542525, 0.71764166168348287, 0, 5),
(-0.28277983892175751, 0.58713640696703184, 1, 0),
(1.0, 0.0, 1, 1),
#etc, etc
答案 2 :(得分:4)
一些hackish和可能效率低下的东西,但我认为这可能是你正在寻找的东西:
import scipy.spatial.distance as dist
import scipy.stats as ss
# Pearson's correlation coefficients
print dist.squareform(dist.pdist(data, lambda x, y: ss.pearsonr(x, y)[0]))
# p-values
print dist.squareform(dist.pdist(data, lambda x, y: ss.pearsonr(x, y)[1]))
Scipy's pdist是一个非常有用的函数,主要用于查找n维空间中观测值之间的成对距离。
但它允许用户定义的可调用距离度量标准,可以利用它来执行任何类型的成对操作。结果以压缩距离矩阵形式返回,可以使用Scipy's 'squareform' function轻松更改为方阵形式。
答案 3 :(得分:1)
如果您不必使用pearson correlation coefficient,则可以使用spearman correlation coefficient,因为它会返回相关矩阵和p值(请注意,前者要求您的数据是正态分布的,而spearman相关是一种非参数测量,因此不假设数据的正态分布)。示例代码:
from scipy import stats
import numpy as np
data = np.array([[0, 1, -1], [0, -1, 1], [0, 1, -1]])
print 'np.corrcoef:', np.corrcoef(data)
cor, pval = stats.spearmanr(data.T)
print 'stats.spearmanr - cor:\n', cor
print 'stats.spearmanr - pval\n', pval
答案 4 :(得分:1)
这与MATLAB中的corrcoef完全一样:
要运行此功能,您需要安装熊猫以及scipy。
# Compute correlation correfficients matrix and p-value matrix
# Similar function as corrcoef in MATLAB
# dframe: pandas dataframe
def corrcoef(dframe):
fmatrix = dframe.values
rows, cols = fmatrix.shape
r = np.ones((cols, cols), dtype=float)
p = np.ones((cols, cols), dtype=float)
for i in range(cols):
for j in range(cols):
if i == j:
r_, p_ = 1., 1.
else:
r_, p_ = pearsonr(fmatrix[:,i], fmatrix[:,j])
r[j][i] = r_
p[j][i] = p_
return r, p
答案 5 :(得分:0)
这是@CT Zhu 答案的最小版本。我们不需要 pandas
,因为相关性可以直接从 numpy
计算,这应该更快,因为我们不需要转换为数据帧的步骤
import numpy as np
import scipy.stats as ss
def corr_significance_two_sided(cc, nData):
# We will divide by 0 if correlation is exactly 1, but that is no problem
# We would simply set the test statistic to be infinity if it evaluates to NAN
with np.errstate(divide='ignore'):
t = -np.abs(cc) * np.sqrt((nData - 2) / (1 - cc**2))
t[t == np.nan] = np.inf
return ss.t.cdf(t, nData - 2) * 2 # multiply by two to get two-sided p-value
x = np.random.uniform(0, 1, (8, 1000))
cc = np.corrcoef(x)
pVal = corr_significance_two_sided(cc, 1000)