我正在拟合逻辑回归模型并将随机状态设置为固定值。
每当我做“适合”时,我会得到不同的系数,例如:
classifier_instance.fit(train_examples_features, train_examples_labels)
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
intercept_scaling=1, penalty='l2', random_state=1, tol=0.0001)
>>> classifier_instance.raw_coef_
array([[ 0.071101940040772596 , 0.05143724979709707323, 0.071101940040772596 , -0.04089477198935181912, -0.0407380696457252528 , 0.03622160087086594843, 0.01055345545606742319,
0.01071861708285645406, -0.36248634699444892693, -0.06159019047096317423, 0.02370064668025737009, 0.02370064668025737009, -0.03159781822495803805, 0.11221150783553821006,
0.02728295348681779309, 0.071101940040772596 , 0.071101940040772596 , 0. , 0.10882033432637286396, 0.64630314505709030026, 0.09617956519989406816,
0.0604133873444507169 , 0. , 0.04111685986987245051, 0. , 0. , 0.18312324521915510078, 0.071101940040772596 ,
0.071101940040772596 , 0. , -0.59561802045324663268, -0.61490898457874587635, 1.07812569991461248975, 0.071101940040772596 ]])
classifier_instance.fit(train_examples_features, train_examples_labels)
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
intercept_scaling=1, penalty='l2', random_state=1, tol=0.0001)
>>> classifier_instance.raw_coef_
array([[ 0.07110193825129411394, 0.05143724970282205489, 0.07110193825129411394, -0.04089477178162870957, -0.04073806899140903354, 0.03622160048165772028, 0.010553455400928528 ,
0.01071860364222424096, -0.36248635488413910588, -0.06159021545062405567, 0.02370064608376460866, 0.02370064608376460866, -0.03159783710841745225, 0.11221149816037970237,
0.02728295411479400578, 0.07110193825129411394, 0.07110193825129411394, 0. , 0.10882033461822394893, 0.64630314701686075729, 0.09617956493834901865,
0.06041338563697066372, 0. , 0.04111676713793514099, 0. , 0. , 0.18312324401049043243, 0.07110193825129411394,
0.07110193825129411394, 0. , -0.59561803345113684127, -0.61490899867901249731, 1.07812569539027203191, 0.07110193825129411394]])
我正在使用版本0.14,文档指定“底层C实现使用随机数生成器在拟合模型时选择特征。因此,对于相同的输入数据,结果略有不同,这并不罕见。发生时,尝试使用较小的tol参数。“
我认为设置随机状态会确保没有随机性,但显然情况并非如此。这是一个错误或期望的行为吗?
答案 0 :(得分:3)
这不是真正的需要,但这是一个很难解决的已知问题。问题在于LogisticRegression
模型是用Liblinear训练的,它不允许以完全稳健的方式设置其随机种子。当您明确设置random_state
时,会尽最大努力设置Liblinear的随机种子,但这可能会失败。
答案 1 :(得分:1)
我也对这个问题感到困惑,但最终发现除了传递numpy.random.seed()
之外,还有必要调用random_state
来设置numpy内部RNG的状态。
使用sklearn 0.13.1进行测试。