有一条折线,顶点的坐标列表= [(x1,y1),(x2,y2),(x3,y3),...]和点(x,y)。在Shapely中,geometry1.distance(geometry2)
返回两个几何之间的最短距离。
>>> from shapely.geometry import LineString, Point
>>> line = LineString([(0,0),(5,7),(12,6)]) #geometry2
>>> list(line.coords)
[(0.0, 0.0), (5.0, 7.0), (12.0, 6.0)]
>>> p = Point(4,8) #geometry1
>>> list(p.coords)
[(4.0, 8.0)]
>>> p.distance(line)
1.4142135623730951
但我还需要找到最接近点(x,y)的线上的点的坐标。在上面的示例中,这是LineString对象上距离Point(4,8)1.4142135623730951单位的点的坐标。方法distance()在计算距离时应该有坐标。有没有办法让它从这个方法返回?
答案 0 :(得分:28)
您所描述的GIS术语是linear referencing和Shapely has these methods。
# Length along line that is closest to the point
print(line.project(p))
# Now combine with interpolated point on line
np = line.interpolate(line.project(p))
print(np) # POINT (5 7)
答案 1 :(得分:0)
如果你有一个单独的段(例如:一行,指的是标题)而不是一个段列表,这就是我所做的,并且通过测试用例。请注意,此页面上的某些用户正在查看来自Google搜索的标题。
def sq_shortest_dist_to_point(self, other_point):
dx = self.b.x - self.a.x
dy = self.b.y - self.a.y
dr2 = float(dx ** 2 + dy ** 2)
lerp = ((other_point.x - self.a.x) * dx + (other_point.y - self.a.y) * dy) / dr2
if lerp < 0:
lerp = 0
elif lerp > 1:
lerp = 1
x = lerp * dx + self.a.x
y = lerp * dy + self.a.y
_dx = x - other_point.x
_dy = y - other_point.y
square_dist = _dx ** 2 + _dy ** 2
return square_dist
def shortest_dist_to_point(self, other_point):
return math.sqrt(self.sq_shortest_dist_to_point(other_point))
def test_distance_to_other_point(self):
# Parametrize test with multiple cases:
segments_and_point_and_answer = [
[Segment(Point(1.0, 1.0), Point(1.0, 3.0)), Point(2.0, 4.0), math.sqrt(2.0)],
[Segment(Point(1.0, 1.0), Point(1.0, 3.0)), Point(2.0, 3.0), 1.0],
[Segment(Point(0.0, 0.0), Point(0.0, 3.0)), Point(1.0, 1.0), 1.0],
[Segment(Point(1.0, 1.0), Point(3.0, 3.0)), Point(2.0, 2.0), 0.0],
[Segment(Point(-1.0, -1.0), Point(3.0, 3.0)), Point(2.0, 2.0), 0.0],
[Segment(Point(1.0, 1.0), Point(1.0, 3.0)), Point(2.0, 3.0), 1.0],
[Segment(Point(1.0, 1.0), Point(1.0, 3.0)), Point(2.0, 4.0), math.sqrt(2.0)],
[Segment(Point(1.0, 1.0), Point(-3.0, -3.0)), Point(-3.0, -4.0), 1],
[Segment(Point(1.0, 1.0), Point(-3.0, -3.0)), Point(-4.0, -3.0), 1],
[Segment(Point(1.0, 1.0), Point(-3.0, -3.0)), Point(1, 2), 1],
[Segment(Point(1.0, 1.0), Point(-3.0, -3.0)), Point(2, 1), 1],
[Segment(Point(1.0, 1.0), Point(-3.0, -3.0)), Point(-3, -1), math.sqrt(2.0)],
[Segment(Point(1.0, 1.0), Point(-3.0, -3.0)), Point(-1, -3), math.sqrt(2.0)],
[Segment(Point(-1.0, -1.0), Point(3.0, 3.0)), Point(3, 1), math.sqrt(2.0)],
[Segment(Point(-1.0, -1.0), Point(3.0, 3.0)), Point(1, 3), math.sqrt(2.0)],
[Segment(Point(1.0, 1.0), Point(3.0, 3.0)), Point(3, 1), math.sqrt(2.0)],
[Segment(Point(1.0, 1.0), Point(3.0, 3.0)), Point(1, 3), math.sqrt(2.0)]
]
for i, (segment, point, answer) in enumerate(segments_and_point_and_answer):
result = segment.shortest_dist_to_point(point)
self.assertAlmostEqual(result, answer, delta=0.001, msg=str((i, segment, point, answer)))
注意:我假设此函数位于Segment
类中。
如果您的行是无限的,请不要仅将lerp
从0限制为1,但仍至少提供两个不同的a
和b
点。