我有一个巨大的数据框,在一个简单的版本中它看起来像这样:
trials=c("1","2","3","4","5","6","7","8","9","10")
co =c(rep ("1",10))
stim=c("8","9","11","2","4","7","8","1","12","16")
ansbin=c("1","0","1","0","0","1","0","1","1","0")
stim.1=c("11","2","11","7","4","3","9","1","4","16")
ansbin.1=c("0","0","1","0","0","1","0","1","1","1")
trials.1=c("1","2","3","4","5","6","7","8","9","10")
co.1 =c(rep ("2",10))
stim1.1=c("11","2","11","2","5","7","8","15","17","10")
ansbin1.1=c("1","1","1","0","0","1","1","1","0","1")
stim2.1=c("11","2","14","1","4","8","9","10","4","12")
ansbin2.1=c("0","1","1","0","0","1","0","0","1","0")
ID<- data.frame(trials,co,stim,ansbin,stim.1,ansbin.1,trials.1,co.1,stim1.1,ansbin1.1,stim2.1,ansbin2.1)
View(ID)
现在我希望以“刺激”,“刺激1”,“刺激1.1”和“刺激2.1”在同一列“刺激”的方式形成我的新数据框架,并且答案是一样的:我希望所有“ansbin”,“ansbin.1”,“ansbin1.1”和“ansbin2.1”在同一列的“答案”下。 试验和试验.1同时应该在同一列,但不同之处是“co”栏。
我试图像这样使用“重塑”:
df<-reshape(ID, direction="long",
idvar=c("trials", "co"),
varying= c("stim","stim.1", "stim1.1","stim2.1","ansbin","ansbin.1","ansbin1.1","ansbin2.1"
v.names=c("stimulus","answer"),
timevar="num",
)
但我每次都有一些问题和警告。我认为它应该是与列名相关联的问题。
你能帮帮我吗? 先感谢您! :)答案 0 :(得分:0)
以下是我采取的方法:
library(data.table)
melt(
rbindlist(split.default(ID, cumsum(grepl("^trials", names(ID))))),
measure.vars = patterns("^stim", "^ansbin"), value.name = c("stim", "ansbin"))
# trials co variable stim ansbin
# 1: 1 1 1 8 1
# 2: 2 1 1 9 0
# 3: 3 1 1 11 1
# 4: 4 1 1 2 0
# 5: 5 1 1 4 0
# ---
# 36: 6 2 2 8 1
# 37: 7 2 2 9 0
# 38: 8 2 2 10 0
# 39: 9 2 2 4 1
# 40: 10 2 2 12 0
基本上,听起来你正在看两轮&#34;重塑&#34;。
rbindlist(split.default(...))
部分答案了。melt(...)
部分答案了。答案 1 :(得分:0)
考虑为每个集合构建一个重新整形的数据框列表: co </ em>,试验,刺激和答案 ,然后将它们合并在一起。但是,因为 co </ em>和试验只带有两列,而后两个带有四列,所以在重新整形之前要考虑重复列:
ID$co2 <- ID$co
ID$co3 <- ID$co.1
ID$trials.2 <- ID$trials
ID$trials.3 <- ID$trials.1
df_list <- lapply(c("co", "trials", "stim", "ans"), function(s)
reshape(ID, direction="long",
varying= grep(s, names(ID)),
v.names=c(s),
drop = grep(paste0("^", s), names(ID), invert=TRUE),
timevar="num",
new.row.names = 1:1000)
)
# CHAIN MERGE
finaldf <- Reduce(function(x, y) merge(x, y, by=c('id', 'num')), df_list)
finaldf <- with(finaldf, finaldf[order(num, id),]) # SORT DATAFRAME
rownames(finaldf) <- NULL # RESET ROWNAMES
head(finaldf)
# id num co trials stim ans
# 1 1 1 1 1 8 1
# 2 2 1 1 2 9 0
# 3 3 1 1 3 11 1
# 4 4 1 1 4 2 0
# 5 5 1 1 5 4 0
# 6 6 1 1 6 7 1