我有一个大约有4000个值的向量。我只需要将它分成60个相等的间隔,然后我必须计算中位数(对于每个箱子)。
v<-c(1:4000)
V实际上只是一个向量。我读过切割但是需要我指定断点。我只想要60个相等的间隔
答案 0 :(得分:14)
使用cut
和tapply
:
> tapply(v, cut(v, 60), median)
(-3,67.7] (67.7,134] (134,201] (201,268]
34.0 101.0 167.5 234.0
(268,334] (334,401] (401,468] (468,534]
301.0 367.5 434.0 501.0
(534,601] (601,668] (668,734] (734,801]
567.5 634.0 701.0 767.5
(801,867] (867,934] (934,1e+03] (1e+03,1.07e+03]
834.0 901.0 967.5 1034.0
(1.07e+03,1.13e+03] (1.13e+03,1.2e+03] (1.2e+03,1.27e+03] (1.27e+03,1.33e+03]
1101.0 1167.5 1234.0 1301.0
(1.33e+03,1.4e+03] (1.4e+03,1.47e+03] (1.47e+03,1.53e+03] (1.53e+03,1.6e+03]
1367.5 1434.0 1500.5 1567.0
(1.6e+03,1.67e+03] (1.67e+03,1.73e+03] (1.73e+03,1.8e+03] (1.8e+03,1.87e+03]
1634.0 1700.5 1767.0 1834.0
(1.87e+03,1.93e+03] (1.93e+03,2e+03] (2e+03,2.07e+03] (2.07e+03,2.13e+03]
1900.5 1967.0 2034.0 2100.5
(2.13e+03,2.2e+03] (2.2e+03,2.27e+03] (2.27e+03,2.33e+03] (2.33e+03,2.4e+03]
2167.0 2234.0 2300.5 2367.0
(2.4e+03,2.47e+03] (2.47e+03,2.53e+03] (2.53e+03,2.6e+03] (2.6e+03,2.67e+03]
2434.0 2500.5 2567.0 2634.0
(2.67e+03,2.73e+03] (2.73e+03,2.8e+03] (2.8e+03,2.87e+03] (2.87e+03,2.93e+03]
2700.5 2767.0 2833.5 2900.0
(2.93e+03,3e+03] (3e+03,3.07e+03] (3.07e+03,3.13e+03] (3.13e+03,3.2e+03]
2967.0 3033.5 3100.0 3167.0
(3.2e+03,3.27e+03] (3.27e+03,3.33e+03] (3.33e+03,3.4e+03] (3.4e+03,3.47e+03]
3233.5 3300.0 3367.0 3433.5
(3.47e+03,3.53e+03] (3.53e+03,3.6e+03] (3.6e+03,3.67e+03] (3.67e+03,3.73e+03]
3500.0 3567.0 3633.5 3700.0
(3.73e+03,3.8e+03] (3.8e+03,3.87e+03] (3.87e+03,3.93e+03] (3.93e+03,4e+03]
3767.0 3833.5 3900.0 3967.0
答案 1 :(得分:3)
过去,我使用过此功能
evenbins <- function(x, bin.count=10, order=T) {
bin.size <- rep(length(x) %/% bin.count, bin.count)
bin.size <- bin.size + ifelse(1:bin.count <= length(x) %% bin.count, 1, 0)
bin <- rep(1:bin.count, bin.size)
if(order) {
bin <- bin[rank(x,ties.method="random")]
}
return(factor(bin, levels=1:bin.count, ordered=order))
}
然后我可以用
运行它v.bin <- evenbins(v, 60)
并使用
检查尺寸table(v.bin)
并看到它们都包含66或67个元素。默认情况下,这将按cut
这样的顺序排序,因此每个因子级别的值都会增加。如果您想根据原始订单对其进行分页,
v.bin <- evenbins(v, 60, order=F)
代替。这只是按照它出现的顺序将数据分开
答案 2 :(得分:1)
此结果显示断点的59个中值。 60个bin值可能尽可能接近相等(但可能不完全相等)。
> sq <- seq(1, 4000, length = 60)
> sapply(2:length(sq), function(i) median(c(sq[i-1], sq[i])))
# [1] 34.88983 102.66949 170.44915 238.22881 306.00847 373.78814
# [7] 441.56780 509.34746 577.12712 644.90678 712.68644 780.46610
# ......
实际上,在检查之后,这些垃圾箱非常接近于平等。
> unique(diff(sq))
# [1] 67.77966 67.77966 67.77966