所以我试图创建一个算法来执行符号区分以获得给定函数的精确导数。我选择了反向波兰表示法来存储表达式,因为它节省了构建实际表达式树的空间和时间。 我将用一个具体的例子来说明我的问题,并且我将手动淡化我的算法;因此,如果你期望一个简单的问题或对答案没有任何线索,请停止阅读并离开(我不需要对此问题进行盲目的投票)。
Example:
Find the derivative of: F=x^3+2*x^2+x
1) Convert F to RPN form results in: x3^2x2^*+x+
2) I'll store RPN in stack as follows:
---
|+|
---
|x|
---
|+|
---
|*|
---
|^|
---
|2|
---
|x|
---
|2|
---
|^|
---
|3|
---
|x|
---
This is basically the post-order traversal of the expression tree for the F expression. For now I'm focusing on kind of simple derivation rules.
2) Pop stack (Should be an operator): [+] Rule: op0[+]op1 := d[op0]+d[op1] -> d[op0]d[op1]+
3) Get op0 (POP): [x] Rule: x := d[x] -> 1
4) APPLY: [1]
5) Get op1 (POP): [+] Rule: op0[+]op1 := d[op0]+d[op1] -> d[op0]d[op1]+
6) Get op0 (POP): [*] Rule: op0[*]op1 := d[op0]*op1+op0*d[op1] -> d[op0]op1*op0d[op1]*+
7) Get op0 (POP): [^] Rule: op1[^]op0 := op1*op0^op1-1 -> op1op0op11-^*
8) Get op1 (POP): [2]
9) Get op0 (POP): [x]
10) APPLY: [1|2|x|2|1|-|^|*]
11) Get op1 (POP): [2]
12) APPLY: // How can I apply the multiplication operator now?
所以如果我的想法是对的,我有以下堆栈:第一个操作数为[2 | x | 2 | 1 | - | ^ | ],第二个操作数为[2]。现在我必须执行[2 | x | 2 | 1 | - | ^ | ] [] [2],这需要我递归这个函数。因为现在我还必须为[2 | x | 2 | 1 | - | ^ | ]执行派生。在这种情况下,我还必须将每个运算符节点的结果存储在不同的堆栈中,并以正确的顺序合并它们。
任何人都可以推荐更有效的方法吗?
答案 0 :(得分:0)
对于简单的多项式,我喜欢找到一个非常短的正则表达式解决方案的想法,但结果比我希望的要长......(JavaScript示例):
function dx(dt){
dt = dt.replace(/\s+/g,"");
var signs = dt.match(/[+-]/g) ? dt.match(/[+-]/g) : [],
dts = dt.split(/[+-]/).map(function(x){
return x.replace(/([0-9]+)?(\*)?([a-zA-Z])?(\^)?([0-9]+)?/,
function(z,a,b,c,d,e){
if (!c){
return "0";
}
a = a ? Number(a) : 1;
if (!e){
return "" + a;
}
e = Number(e);
return "" + (e*a) + "*" + c
+ (e - 1 > 1 ? d + (e - 1) : "");
});
});
return dts.map(function(v,i){
return v + (signs[i] ? " " + signs[i] : "");
}).join(" ").replace(/\s\+\s0|0\s\+\s/g,"");
}
console.log(dx("x^3+2*x^2+x"));
console.log(dx("12x"));
console.log(dx("6"));
输出:
"3*x^2 + 4*x + 1"
"12"
"0"