如何将每月系列(dfm)汇总为年度(ts)用于绘图目的?

时间:2014-06-19 00:43:58

标签: r time-series

我正在从Cowpertwait和Metcalfe的书中学习时间序列,"与R"一起介绍时间序列。这是电子书链接:http://unalmed.edu.co/~ndgirald/Archivos%20Lectura/Archivos%20curso%20Series%20EIO/notas%20series%20en%20r%20couperwait.pdf

我按照第20页的图书代码将12列的数据框转换为时间序列,将月份全球温度汇总到每年,然后绘制它,但它不起作用

以下是我收到的错误:Error in plotts(x = x, y = y, plot.type = plot.type, xy.labels = xy.labels, : cannot plot more than 10 series as "multiple"

以下是本书的代码,我还包括了他们网站上的数据集

 global<-read.table("Chapter01global.txt",header=F)
 global.ts = ts(global, st=c(1856,1), end=c(2005,12), fr=12)
 global.annual = aggregate(global.ts, FUN=mean)
 plot(global.ts); plot(global.annual)

这是我不明白的: dim(global)是150 12,但是 dim(global.ts)是1800 12.难道它不是同一个维度吗?然后 dim(global.annual)是150 12.不应该是150 1,因为平均值是在所有月份内接受的。

另外,我假设每个列都是每个月的全球温度,因为有150行,相当于1856年到2005年的年数。

有谁知道如何修复代码? Thaks

这是数据集:

-0.384 -0.457 -0.673 -0.344 -0.311 -0.071 -0.246 -0.235 -0.380 -0.418 -0.670 -0.386 
-0.437 -0.150 -0.528 -0.692 -0.629 -0.363 -0.375 -0.328 -0.495 -0.646 -0.754 -0.137 
-0.452 -1.031 -0.643 -0.328 -0.311 -0.263 -0.248 -0.274 -0.203 -0.121 -0.913 -0.197 
-0.249 -0.041 -0.082 -0.172 -0.085 -0.278 -0.220 -0.132 -0.436 -0.234 -0.288 -0.486 
-0.070 -0.526 -0.599 -0.420 -0.273 -0.063 -0.182 -0.256 -0.213 -0.326 -0.696 -0.813 
-0.858 -0.415 -0.431 -0.443 -0.735 -0.169 -0.227 -0.131 -0.377 -0.375 -0.434 -0.209 
-0.711 -0.817 -0.435 -0.232 -0.194 -0.322 -0.466 -0.623 -0.345 -0.382 -0.932 -0.768 
 0.263 -0.063 -0.379 -0.187 -0.320 -0.365 -0.510 -0.359 -0.291 -0.431 -0.362 -0.276 
-0.834 -0.604 -0.516 -0.482 -0.399 -0.200 -0.138 -0.332 -0.394 -0.711 -0.507 -0.587 
-0.125 -0.615 -0.597 -0.135 -0.152 -0.227 -0.153 -0.267  0.002 -0.358 -0.200 -0.324 
 0.095 -0.173 -0.396 -0.119 -0.533  0.078 -0.089 -0.282 -0.224 -0.364 -0.294 -0.368 
-0.306  0.087 -0.665 -0.235 -0.452 -0.316 -0.267 -0.218 -0.073 -0.177 -0.317 -0.540 
-0.718 -0.382  0.004 -0.281 -0.029 -0.113  0.067 -0.135 -0.234 -0.247 -0.517 -0.098 
-0.159  0.241 -0.602 -0.232 -0.210 -0.372 -0.295 -0.228 -0.252 -0.581 -0.489 -0.487 
-0.072 -0.462 -0.426 -0.246 -0.260 -0.242 -0.110 -0.216 -0.248 -0.352 -0.133 -0.729 
-0.349 -0.528 -0.058 -0.157 -0.215 -0.216 -0.129 -0.218 -0.437 -0.505 -0.613 -0.643 
-0.378 -0.385 -0.469 -0.163 -0.109 -0.117 -0.206 -0.146 -0.171 -0.269 -0.359 -0.385 
-0.090 -0.397 -0.365 -0.414 -0.433 -0.187 -0.138 -0.183 -0.302 -0.541 -0.508 -0.397 
-0.033 -0.407 -0.569 -0.573 -0.470 -0.300 -0.111 -0.342 -0.248 -0.476 -0.564 -0.425 
-0.665 -0.673 -0.561 -0.457 -0.099 -0.162 -0.330 -0.233 -0.390 -0.463 -0.533 -0.493 
-0.320 -0.361 -0.451 -0.407 -0.548 -0.387 -0.272 -0.239 -0.456 -0.465 -0.739 -0.812 
-0.401 -0.085 -0.310 -0.442 -0.530 -0.155 -0.136 -0.165 -0.121 -0.157 -0.186  0.142 
 0.009  0.204  0.341  0.159 -0.125 -0.066 -0.134 -0.116 -0.113 -0.169 -0.274 -0.430 
-0.244 -0.254 -0.145 -0.330 -0.279 -0.222 -0.166 -0.298 -0.220 -0.217 -0.537 -0.555 
-0.108 -0.264 -0.300 -0.217 -0.334 -0.382 -0.280 -0.112 -0.274 -0.434 -0.557 -0.280 
-0.506 -0.354 -0.231 -0.174 -0.020 -0.211 -0.029 -0.104 -0.221 -0.351 -0.497 -0.246 
-0.070 -0.123 -0.070 -0.276 -0.266 -0.321 -0.221 -0.166 -0.252 -0.365 -0.489 -0.530 
-0.480 -0.382 -0.437 -0.327 -0.317 -0.043 -0.146 -0.241 -0.335 -0.435 -0.348 -0.315 
-0.402 -0.300 -0.362 -0.444 -0.345 -0.344 -0.243 -0.198 -0.290 -0.300 -0.559 -0.384 
-0.551 -0.481 -0.343 -0.426 -0.386 -0.432 -0.268 -0.301 -0.241 -0.309 -0.311 -0.150 
-0.340 -0.490 -0.339 -0.140 -0.061 -0.236 -0.138 -0.134 -0.202 -0.341 -0.362 -0.290 
-0.439 -0.483 -0.363 -0.426 -0.262 -0.302 -0.151 -0.278 -0.259 -0.465 -0.365 -0.357 
-0.629 -0.512 -0.556 -0.281 -0.301 -0.234 -0.265 -0.260 -0.139 -0.114 -0.218 -0.234 
-0.195 -0.144 -0.142 -0.120 -0.036 -0.088 -0.200 -0.266 -0.270 -0.351 -0.436 -0.185 
-0.347 -0.308 -0.334 -0.315 -0.454 -0.398 -0.406 -0.406 -0.466 -0.472 -0.596 -0.423 
-0.583 -0.555 -0.422 -0.364 -0.256 -0.285 -0.312 -0.258 -0.167 -0.319 -0.537 -0.163 
-0.477 -0.099 -0.453 -0.481 -0.407 -0.250 -0.397 -0.351 -0.232 -0.439 -0.571 -0.746 
-1.032 -0.803 -0.386 -0.538 -0.518 -0.342 -0.185 -0.314 -0.300 -0.259 -0.368 -0.329 
-0.422 -0.333 -0.370 -0.407 -0.435 -0.467 -0.342 -0.358 -0.500 -0.417 -0.474 -0.408 
-0.567 -0.688 -0.465 -0.356 -0.353 -0.291 -0.384 -0.257 -0.205 -0.245 -0.274 -0.267 
-0.241 -0.200 -0.412 -0.358 -0.096 -0.133 -0.145 -0.148 -0.155 -0.099 -0.311 -0.091 
-0.290 -0.168 -0.323 -0.095 -0.011 -0.076 -0.111 -0.119 -0.105 -0.149 -0.414 -0.350 
-0.053 -0.297 -0.770 -0.396 -0.398 -0.205 -0.269 -0.255 -0.258 -0.446 -0.461 -0.265 
-0.247 -0.505 -0.518 -0.294 -0.250 -0.291 -0.173 -0.151 -0.115 -0.135  0.054 -0.404 
-0.302 -0.269 -0.339 -0.250 -0.159 -0.067 -0.153 -0.173 -0.140 -0.038 -0.312 -0.089 
-0.134 -0.255 -0.256 -0.144 -0.178 -0.149 -0.236 -0.238 -0.314 -0.325 -0.426 -0.436 
-0.083 -0.149 -0.321 -0.423 -0.344 -0.329 -0.298 -0.353 -0.368 -0.449 -0.522 -0.544 
-0.321 -0.136 -0.421 -0.445 -0.441 -0.473 -0.459 -0.492 -0.524 -0.532 -0.533 -0.575 
-0.626 -0.546 -0.649 -0.561 -0.452 -0.403 -0.416 -0.373 -0.358 -0.350 -0.266 -0.330 
-0.470 -0.679 -0.503 -0.549 -0.342 -0.288 -0.280 -0.265 -0.251 -0.342 -0.238 -0.233 
-0.171 -0.319 -0.375 -0.182 -0.251 -0.226 -0.308 -0.238 -0.318 -0.300 -0.503 -0.312 
-0.531 -0.531 -0.426 -0.604 -0.661 -0.556 -0.478 -0.459 -0.382 -0.363 -0.595 -0.483 
-0.432 -0.465 -0.635 -0.515 -0.523 -0.379 -0.387 -0.446 -0.386 -0.516 -0.571 -0.490 
-0.538 -0.514 -0.635 -0.572 -0.529 -0.444 -0.493 -0.285 -0.276 -0.291 -0.287 -0.516 
-0.317 -0.435 -0.441 -0.404 -0.447 -0.460 -0.331 -0.386 -0.372 -0.468 -0.585 -0.640 
-0.520 -0.612 -0.643 -0.666 -0.500 -0.466 -0.383 -0.372 -0.346 -0.409 -0.352 -0.273 
-0.354 -0.260 -0.457 -0.347 -0.354 -0.251 -0.414 -0.507 -0.494 -0.573 -0.461 -0.399 
-0.379 -0.464 -0.602 -0.471 -0.520 -0.516 -0.370 -0.302 -0.346 -0.394 -0.230 -0.133 
-0.063 -0.194 -0.330 -0.368 -0.259 -0.198 -0.183 -0.270 -0.299 -0.140 -0.328 -0.360 
-0.190 -0.004 -0.408 -0.050 -0.218 -0.104 -0.032 -0.159 -0.085 -0.265 -0.169 -0.248 
-0.242 -0.237 -0.529 -0.339 -0.374 -0.433 -0.300 -0.250 -0.275 -0.310 -0.510 -0.658 
-0.514 -0.785 -0.788 -0.503 -0.748 -0.374 -0.252 -0.319 -0.150 -0.411 -0.353 -0.787 
-0.540 -0.557 -0.537 -0.541 -0.598 -0.324 -0.393 -0.417 -0.344 -0.137 -0.231 -0.269 
-0.198 -0.157 -0.355 -0.104 -0.295 -0.232 -0.254 -0.289 -0.171 -0.305 -0.634 -0.484 
-0.246 -0.414 -0.196 -0.275 -0.176 -0.265 -0.333 -0.238 -0.175 -0.304 -0.412 -0.443 
-0.105 -0.242 -0.221 -0.180 -0.131 -0.149 -0.116 -0.304 -0.265 -0.197 -0.438 -0.238 
-0.370 -0.350 -0.336 -0.321 -0.332 -0.311 -0.285 -0.285 -0.310 -0.332 -0.299 -0.325 
-0.195 -0.463 -0.354 -0.452 -0.354 -0.262 -0.382 -0.433 -0.303 -0.224 -0.061 -0.058 
-0.320 -0.308 -0.320 -0.406 -0.322 -0.265 -0.274 -0.287 -0.319 -0.330 -0.391 -0.565 
-0.402 -0.291 -0.256 -0.263 -0.293 -0.282 -0.265 -0.172 -0.244 -0.328 -0.151  0.015 
 0.085  0.055 -0.011 -0.203 -0.235 -0.142 -0.195 -0.054 -0.122 -0.082 -0.215 -0.242 
-0.256 -0.108 -0.347 -0.275 -0.278 -0.190 -0.135 -0.153 -0.114 -0.075 -0.205 -0.473 
-0.128 -0.214 -0.400 -0.324 -0.259 -0.280 -0.187 -0.214 -0.170 -0.172 -0.133 -0.194 
-0.430 -0.687 -0.388 -0.397 -0.389 -0.344 -0.349 -0.257 -0.260 -0.143 -0.093 -0.516 
-0.354 -0.207 -0.188 -0.211 -0.233 -0.127 -0.105 -0.079 -0.130 -0.119  0.026 -0.095 
 0.007 -0.240 -0.122 -0.161 -0.163 -0.016  0.019 -0.061 -0.097 -0.061 -0.179 -0.084 
 0.126 -0.234 -0.307 -0.110 -0.207 -0.139 -0.110 -0.136 -0.030 -0.083 -0.232 -0.188 
-0.276 -0.320 -0.322 -0.218 -0.195 -0.159 -0.132 -0.101 -0.188 -0.147 -0.313 -0.489 
-0.221 -0.151 -0.371 -0.267 -0.090 -0.034 -0.060 -0.046 -0.141 -0.073 -0.056 -0.118 
-0.286  0.171 -0.204 -0.302 -0.285 -0.184 -0.123 -0.122 -0.151 -0.036 -0.311 -0.216 
-0.232 -0.366 -0.239 -0.236 -0.127 -0.086  0.019 -0.014 -0.068 -0.032 -0.046 -0.006 
-0.154  0.080 -0.247 -0.167 -0.056  0.019  0.030  0.108  0.130  0.088  0.013 -0.128 
 0.032  0.062  0.147  0.150  0.053  0.032  0.124  0.053  0.124  0.197  0.096 -0.187 
-0.042 -0.030 -0.218 -0.116 -0.035  0.094  0.028  0.044 -0.113 -0.207 -0.068  0.160 
-0.402 -0.183 -0.184 -0.100 -0.122  0.016  0.134 -0.070  0.033 -0.077 -0.103  0.084 
-0.040  0.037 -0.114  0.089 -0.050  0.054  0.066  0.028 -0.117  0.211  0.061  0.102 
 0.143 -0.104 -0.039  0.006  0.007  0.044 -0.084 -0.019  0.042 -0.018 -0.060 -0.124 
-0.249  0.036 -0.221 -0.020  0.071 -0.063  0.082 -0.037  0.024  0.188  0.005  0.162 
 0.282  0.133  0.101  0.024  0.107  0.187  0.210  0.213  0.294  0.247  0.062 -0.011 
 0.036  0.037  0.003  0.161 -0.100  0.004 -0.018  0.301  0.107  0.134 -0.013 -0.189 
 0.084  0.094 -0.196 -0.002 -0.190 -0.241 -0.105 -0.197 -0.067 -0.041 -0.127 -0.383 
-0.148 -0.186 -0.097 -0.071 -0.129 -0.064 -0.094 -0.086 -0.126  0.043 -0.014 -0.236 
 0.018 -0.147 -0.212 -0.091  0.005 -0.019 -0.140 -0.092 -0.093 -0.033 -0.096 -0.205 
 0.107 -0.201 -0.187 -0.043 -0.113 -0.150 -0.110 -0.043 -0.058 -0.060 -0.084 -0.230 
-0.329 -0.274 -0.157 -0.209 -0.148 -0.119 -0.139 -0.165 -0.135 -0.170 -0.403 -0.237 
-0.364 -0.462 -0.270 -0.157 -0.089 -0.053 -0.018  0.044  0.091  0.092 -0.036  0.106 
 0.106  0.069 -0.121  0.021 -0.007  0.008  0.003  0.018  0.018 -0.056 -0.218 -0.086 
 0.051  0.122  0.107  0.112  0.021  0.030 -0.039  0.015  0.047  0.056 -0.071  0.068 
-0.221 -0.103 -0.186 -0.212 -0.254 -0.158 -0.254 -0.146 -0.107 -0.112 -0.021 -0.247 
 0.053 -0.169 -0.389 -0.290 -0.219 -0.188 -0.192 -0.075 -0.103 -0.115 -0.268 -0.320 
-0.239 -0.379 -0.323 -0.326 -0.323 -0.261 -0.203 -0.242 -0.268 -0.195 -0.295 -0.248 
-0.154 -0.103 -0.115 -0.066  0.013  0.050 -0.019  0.061  0.027 -0.002  0.083  0.168 
 0.275  0.174  0.065  0.046  0.045  0.001  0.049  0.017 -0.034  0.013  0.041  0.078 
 0.110  0.056  0.088  0.062 -0.010  0.053  0.033 -0.011  0.032 -0.061 -0.138 -0.055 
-0.020  0.158 -0.296 -0.128 -0.133  0.009  0.006  0.009  0.042 -0.006 -0.118  0.136 
 0.028  0.134  0.055  0.069  0.077  0.066 -0.023  0.007 -0.023 -0.079 -0.049 -0.092 
 0.031  0.087  0.016 -0.020 -0.067 -0.062 -0.022 -0.017 -0.004  0.033  0.024  0.027 
-0.042  0.166 -0.123 -0.053 -0.040 -0.021  0.061  0.100  0.085  0.155  0.110  0.016 
-0.023 -0.158 -0.277 -0.246 -0.175 -0.185 -0.172 -0.255 -0.283 -0.342 -0.297 -0.414 
-0.195 -0.290 -0.244 -0.273 -0.155 -0.129 -0.217 -0.127 -0.100 -0.055 -0.148 -0.078 
-0.097 -0.080 -0.066 -0.132 -0.120  0.017  0.005 -0.057 -0.018 -0.119 -0.108 -0.218 
-0.172 -0.269 -0.110 -0.094  0.019 -0.125 -0.112 -0.052 -0.096  0.071 -0.107 -0.134 
-0.272 -0.227  0.015 -0.192 -0.209 -0.095 -0.068 -0.055 -0.053 -0.013 -0.050 -0.093 
-0.178 -0.106  0.028  0.104  0.079  0.025  0.076  0.051  0.027  0.039  0.130  0.169 
 0.068  0.172 -0.040  0.043 -0.042 -0.013 -0.067 -0.079 -0.051 -0.096 -0.070 -0.215 
-0.078 -0.309 -0.286 -0.236 -0.232 -0.246 -0.152 -0.129 -0.126 -0.148 -0.126 -0.206 
-0.350 -0.286 -0.154 -0.065 -0.038  0.022  0.013  0.069 -0.002  0.052  0.016  0.173 
 0.187  0.263  0.237  0.137  0.129  0.128  0.074  0.028 -0.023  0.011 -0.071 -0.070 
-0.301 -0.314 -0.194 -0.169 -0.146 -0.111 -0.065 -0.073 -0.140 -0.172 -0.174 -0.218 
-0.077 -0.111 -0.092 -0.091 -0.038 -0.082 -0.082 -0.120 -0.066 -0.220 -0.264 -0.281 
-0.197 -0.278 -0.391 -0.153 -0.258 -0.148 -0.156 -0.165 -0.129 -0.294 -0.166 -0.092 
-0.112  0.088  0.140  0.122  0.060  0.123  0.051  0.019  0.067  0.017  0.140 -0.014 
 0.065  0.027  0.027 -0.030 -0.114 -0.130 -0.031 -0.120 -0.045 -0.092  0.011 -0.041 
 0.014 -0.121  0.006 -0.042 -0.023  0.078  0.036  0.114  0.128  0.159  0.138  0.334 
 0.129  0.148  0.047  0.138  0.203  0.126  0.067  0.056  0.040  0.032  0.162  0.056 
 0.304  0.202  0.227  0.159  0.067  0.077  0.042  0.090  0.072  0.035  0.074  0.254 
-0.007 -0.025 -0.104  0.030  0.051 -0.021 -0.002 -0.011  0.077  0.039 -0.012  0.209 
 0.373  0.334  0.247  0.188  0.173  0.198  0.207  0.235  0.211  0.114  0.276  0.113 
 0.130  0.047  0.106  0.037  0.115  0.018  0.061  0.095  0.036  0.012 -0.078 -0.211 
 0.086 -0.093  0.010 -0.015  0.052 -0.033 -0.018  0.047  0.005  0.029 -0.016  0.086 
 0.198  0.185  0.120  0.109  0.102  0.116  0.055  0.053  0.076  0.077 -0.029  0.084 
 0.189  0.339  0.070  0.182  0.199  0.219  0.330  0.270  0.330  0.264  0.252  0.418 
 0.427  0.297  0.373  0.316  0.248  0.251  0.200  0.220  0.166  0.185  0.038  0.143 
 0.061  0.159  0.155  0.131  0.107  0.148  0.208  0.206  0.198  0.225  0.132  0.243 
 0.237  0.283  0.534  0.355  0.282  0.271  0.253  0.291  0.218  0.351  0.360  0.260 
 0.301  0.385  0.220  0.376  0.296  0.341  0.289  0.222  0.210  0.173  0.107  0.095 
 0.349  0.306  0.245  0.143  0.144  0.130  0.020  0.035  0.004 -0.021 -0.064  0.097 
 0.321  0.296  0.262  0.227  0.223  0.169  0.136  0.111  0.051  0.137  0.017  0.194 
 0.222 -0.032  0.223  0.243  0.244  0.224  0.185  0.224  0.239  0.327  0.361  0.331 
 0.462  0.558  0.373  0.319  0.281  0.369  0.387  0.415  0.323  0.350  0.361  0.280 
 0.163  0.343  0.217  0.164  0.256  0.274  0.281  0.228  0.189  0.165  0.166  0.278 
 0.254  0.348  0.324  0.295  0.299  0.431  0.422  0.444  0.517  0.538  0.488  0.572 
 0.512  0.824  0.593  0.660  0.613  0.639  0.704  0.670  0.475  0.452  0.345  0.469 
 0.404  0.607  0.283  0.357  0.296  0.328  0.340  0.287  0.324  0.280  0.197  0.383 
 0.203  0.429  0.388  0.469  0.304  0.267  0.250  0.365  0.304  0.219  0.123  0.172 
 0.343  0.307  0.505  0.432  0.456  0.415  0.447  0.502  0.407  0.390  0.523  0.348 
 0.641  0.680  0.620  0.445  0.429  0.449  0.488  0.395  0.439  0.395  0.423  0.301 
 0.545  0.430  0.393  0.397  0.450  0.440  0.454  0.518  0.521  0.573  0.429  0.573 
 0.508  0.619  0.527  0.469  0.295  0.358  0.364  0.436  0.452  0.494  0.586  0.385 
 0.502  0.355  0.512  0.553  0.494  0.516  0.537  0.510  0.526  0.514  0.493  0.305 

1 个答案:

答案 0 :(得分:1)

您的问题就在这里,您将ts应用于由data.frame而不是read.table值产生的vector

global <- read.table("Chapter01global.txt",header=F)
global.ts = ts(global, st=c(1856,1), end=c(2005,12), fr=12)

比较他们的代码:

www = "http://web.address.that.doesnt.work.anymore.com"
global = scan(www)
#Read 1800 items
global.ts = ts(global, st=c(1856,1), end=c(2005,12), fr=12)

您的代码会产生:

str(global)
#'data.frame':   150 obs. of  12 variables: ...

他们的代码会生成一个向量,然后可以将其转换为正确的ts对象:

str(global)
#num [1:1800] -0.384 -0.457 -0.673 -0.344 -...