我有一个二维NxM numpy数组:
a = np.ndarray((N,M), dtype=np.float32)
我想制作一个具有选定数量的列和矩阵的子矩阵。对于每个维度,我输入二进制向量或索引向量。我怎样才能最有效率?
实施例
a = array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
cols = [True, False, True]
rows = [False, False, True, True]
cols_i = [0,2]
rows_i = [2,3]
result = wanted_function(a, cols, rows) or wanted_function_i(a, cols_i, rows_i)
result = array([[2, 3],
[ 10, 11]])
答案 0 :(得分:2)
您只需将cols
和rows
设为一个numpy数组,然后您就可以使用[]
作为:
import numpy as np
a = np.array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
cols = np.array([True, False, True])
rows = np.array([False, False, True, True])
result = a[cols][:,rows]
print(result)
print(type(result))
# [[ 2 3]
# [10 11]]
# <class 'numpy.ndarray'>
答案 1 :(得分:2)
有几种方法可以在numpy中获得子矩阵:
In [35]: ri = [0,2]
...: ci = [2,3]
...: a[np.reshape(ri, (-1, 1)), ci]
Out[35]:
array([[ 2, 3],
[10, 11]])
In [36]: a[np.ix_(ri, ci)]
Out[36]:
array([[ 2, 3],
[10, 11]])
In [37]: s=a[np.ix_(ri, ci)]
In [38]: np.may_share_memory(a, s)
Out[38]: False
请注意,您获得的子矩阵是新副本,而不是原始垫子的视图。