我想将几个不同的ggplot图放入单个图像中。经过多次探索,我发现如果数据格式正确,ggplot可以很好地生成单个图或一系列图。但是,当您想要组合多个图时,有许多不同的选项可以将它们组合起来,这会让人感到困惑和快速复杂。对于我的最终情节,我有以下愿望:
我已经搜索了满足上述要求的解决方案,但它无法正常工作。下面的代码做了很多这方面的工作(尽管可能是一种复杂的方式),但是不能满足我上面列出的要求。以下是我的具体问题:
非常感谢任何帮助解决这些问题。
(这有点长,但对于这个问题,我认为可能会有奇怪的互动)
# Load needed libraries ---------------------------------------------------
library(ggplot2)
library(caret)
library(grid)
rm(list = ls())
# Genereate Sample Data ---------------------------------------------------
N = 1000
classes = c('A', 'B', 'C', 'D', 'E')
set.seed(37)
ind = 1:N
data1 = sin(100*runif(N))
data2 = cos(100*runif(N))
data3 = cos(100*runif(N)) * sin(100*runif(N))
data4 = factor(unlist(lapply(classes, FUN = function(x) {rep(x, N/length(classes))})))
data = data.frame(ind, data1, data2, data3, Class = data4)
rm(ind, data1, data2, data3, data4, N, classes)
# Sperate into smaller datasets for training and testing ------------------
set.seed(1976)
inTrain <- createDataPartition(y = data$data1, p = 0.75, list = FALSE)
data_Train = data[inTrain,]
data_Test = data[-inTrain,]
rm(inTrain)
# Generate Individual Plots -----------------------------------------------
data1_plot = ggplot(data) + theme_bw() + geom_point(aes(x = ind, y = data1, color = Class))
data2_plot = ggplot(data) + theme_bw() + geom_point(aes(x = ind, y = data2, color = Class))
data3_plot = ggplot(data) + theme_bw() + geom_point(aes(x = ind, y = data3, color = Class))
isTraining = ggplot(data_Train) + theme_bw() + geom_point(aes(x = ind, y = 1, color = Class))
isTesting = ggplot(data_Test) + theme_bw() + geom_point(aes(x = ind, y = 1, color = Class))
# Set the desired legend properties before extraction to grob -------------
data1_plot = data1_plot + theme(legend.key = element_blank())
# Extract the legend from one of the plots --------------------------------
getLegend<-function(a.gplot){
tmp <- ggplot_gtable(ggplot_build(a.gplot))
leg <- which(sapply(tmp$grobs, function(x) x$name) == "guide-box")
legend <- tmp$grobs[[leg]]
return(legend)}
leg = getLegend(data1_plot)
# Remove legend from other plots ------------------------------------------
data1_plot = data1_plot + theme(legend.position = 'none')
data2_plot = data2_plot + theme(legend.position = 'none')
data3_plot = data3_plot + theme(legend.position = 'none')
isTraining = isTraining + theme(legend.position = 'none')
isTesting = isTesting + theme(legend.position = 'none')
# Remove the grid from the isTraining and isTesting plots -----------------
isTraining = isTraining + theme(panel.grid.minor=element_blank(), panel.grid.major=element_blank())
isTesting = isTesting + theme(panel.grid.minor=element_blank(), panel.grid.major=element_blank())
# Remove the y-axis from the isTraining and the isTesting Plots -----------
isTraining = isTraining + theme(axis.ticks = element_blank(), axis.text = element_blank())
isTesting = isTesting + theme(axis.ticks = element_blank(), axis.text = element_blank())
# Remove the margin from the plots and set the XLab to null ---------------
tmp = theme(panel.margin = unit(c(0, 0, 0, 0), units = 'cm'), plot.margin = unit(c(0, 0, 0, 0), units = 'cm'))
data1_plot = data1_plot + tmp + labs(x = NULL, y = 'Data 1')
data2_plot = data2_plot + tmp + labs(x = NULL, y = 'Data 2')
data3_plot = data3_plot + tmp + labs(x = NULL, y = 'Data 3')
isTraining = isTraining + tmp + labs(x = NULL, y = 'Training')
isTesting = isTesting + tmp + labs(x = NULL, y = 'Testing')
# Add the XLabel back to the bottom plot ----------------------------------
data3_plot = data3_plot + labs(x = 'Index')
# Remove the X-Axis from all the plots but the bottom one -----------------
# data3 is to the be last plot...
data1_plot = data1_plot + theme(axis.ticks.x = element_blank(), axis.text.x = element_blank())
data2_plot = data2_plot + theme(axis.ticks.x = element_blank(), axis.text.x = element_blank())
isTraining = isTraining + theme(axis.ticks.x = element_blank(), axis.text.x = element_blank())
isTesting = isTesting + theme(axis.ticks.x = element_blank(), axis.text.x = element_blank())
# Store plots in a list for ease of processing ----------------------------
plots = list()
plots[[1]] = isTraining
plots[[2]] = isTesting
plots[[3]] = data1_plot
plots[[4]] = data2_plot
plots[[5]] = data3_plot
# Fix the widths of the plots so that the left side of the axes align ----
# Note: This does not seem to function correctly....
# I tried to adapt from:
# http://stackoverflow.com/questions/13294952/left-align-two-graph-edges-ggplot
plotGrobs = lapply(plots, ggplotGrob)
plotGrobs[[1]]$widths[2:5]
maxWidth = plotGrobs[[1]]$widths[2:5]
for(i in length(plots)) {
maxWidth = grid::unit.pmax(maxWidth, plotGrobs[[i]]$widths[2:5])
}
for(i in length(plots)) {
plotGrobs[[i]]$widths[2:5] = as.list(maxWidth)
}
plotAtPos = function(x = 0.5, y = 0.5, width = 1, height = 1, obj) {
pushViewport(viewport(x = x + 0.5*width, y = y + 0.5*height, width = width, height = height))
grid.draw(obj)
upViewport()
}
grid.newpage()
plotAtPos(x = 0, y = 0.85, width = 0.9, height = 0.1, plotGrobs[[1]])
plotAtPos(x = 0, y = 0.75, width = 0.9, height = 0.1, plotGrobs[[2]])
plotAtPos(x = 0, y = 0.5, width = 0.9, height = 0.2, plotGrobs[[3]])
plotAtPos(x = 0, y = 0.3, width = 0.9, height = 0.2, plotGrobs[[4]])
plotAtPos(x = 0, y = 0.1, width = 0.9, height = 0.2, plotGrobs[[5]])
plotAtPos(x = 0.9, y = 0, width = 0.1, height = 1, leg)
答案 0 :(得分:6)
对齐ggplots应该使用rbind.gtable
;这里它相当直接,因为gtables都有相同数量的列。在我看来,设置面板高度并在侧面添加图例也比使用网格视口更直接。
唯一的轻微烦恼是rbind.gtable
currently doesn't handle unit.pmax
to set the widths as required。虽然很容易修复,但请参阅下面的rbind_max
功能。
require(gtable)
rbind_max <- function(...){
gtl <- lapply(list(...), ggplotGrob)
bind2 <- function (x, y)
{
stopifnot(ncol(x) == ncol(y))
if (nrow(x) == 0)
return(y)
if (nrow(y) == 0)
return(x)
y$layout$t <- y$layout$t + nrow(x)
y$layout$b <- y$layout$b + nrow(x)
x$layout <- rbind(x$layout, y$layout)
x$heights <- gtable:::insert.unit(x$heights, y$heights)
x$rownames <- c(x$rownames, y$rownames)
x$widths <- grid::unit.pmax(x$widths, y$widths)
x$grobs <- append(x$grobs, y$grobs)
x
}
Reduce(bind2, gtl)
}
gp <- do.call(rbind_max, plots)
gp <- gtable_add_cols(gp, widths = sum(leg$widths))
panels <- gp$layout$t[grep("panel", gp$layout$name)]
# set the relative panel heights 1/3 for the top two
gp$heights[panels] <- lapply(c(1,1,3,3,3), unit, "null")
# set the legend justification to top (it's a gtable embedded in a gtable)
leg[["grobs"]][[1]][["vp"]] <- viewport(just = c(0.5,1))
gp <- gtable_add_grob(gp, leg, t = 1, l = ncol(gp))
grid.newpage()
grid.draw(gp)