我经常发现火花在大型工作岗位上失败,而且没有任何无意义的例外。工作日志看起来很正常,没有错误,但是他们得到状态" KILLED"。这对于大型shuffle非常常见,因此像.distinct
。
问题是,我如何诊断出现了什么问题,理想情况下,我该如何解决?
鉴于很多这些操作是单一的,我通过将数据分成10个块,在每个块上运行应用程序,然后在所有结果输出上运行应用程序来解决问题。换句话说 - meta-map-reduce。
14/06/04 12:56:09 ERROR client.AppClient$ClientActor: Master removed our application: FAILED; stopping client
14/06/04 12:56:09 WARN cluster.SparkDeploySchedulerBackend: Disconnected from Spark cluster! Waiting for reconnection...
14/06/04 12:56:09 WARN scheduler.TaskSetManager: Loss was due to java.io.IOException
java.io.IOException: Filesystem closed
at org.apache.hadoop.hdfs.DFSClient.checkOpen(DFSClient.java:703)
at org.apache.hadoop.hdfs.DFSInputStream.readWithStrategy(DFSInputStream.java:779)
at org.apache.hadoop.hdfs.DFSInputStream.read(DFSInputStream.java:840)
at java.io.DataInputStream.read(DataInputStream.java:149)
at org.apache.hadoop.io.compress.DecompressorStream.getCompressedData(DecompressorStream.java:159)
at org.apache.hadoop.io.compress.DecompressorStream.decompress(DecompressorStream.java:143)
at org.apache.hadoop.io.compress.DecompressorStream.read(DecompressorStream.java:85)
at java.io.InputStream.read(InputStream.java:101)
at org.apache.hadoop.util.LineReader.fillBuffer(LineReader.java:180)
at org.apache.hadoop.util.LineReader.readDefaultLine(LineReader.java:216)
at org.apache.hadoop.util.LineReader.readLine(LineReader.java:174)
at org.apache.hadoop.mapred.LineRecordReader.next(LineRecordReader.java:209)
at org.apache.hadoop.mapred.LineRecordReader.next(LineRecordReader.java:47)
at org.apache.spark.rdd.HadoopRDD$$anon$1.getNext(HadoopRDD.scala:164)
at org.apache.spark.rdd.HadoopRDD$$anon$1.getNext(HadoopRDD.scala:149)
at org.apache.spark.util.NextIterator.hasNext(NextIterator.scala:71)
at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:27)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327)
at scala.collection.Iterator$class.foreach(Iterator.scala:727)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1157)
at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48)
at scala.collection.mutable.ListBuffer.$plus$plus$eq(ListBuffer.scala:176)
at scala.collection.mutable.ListBuffer.$plus$plus$eq(ListBuffer.scala:45)
at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273)
at scala.collection.AbstractIterator.to(Iterator.scala:1157)
at scala.collection.TraversableOnce$class.toList(TraversableOnce.scala:257)
at scala.collection.AbstractIterator.toList(Iterator.scala:1157)
at $line5.$read$$iwC$$iwC$$iwC$$iwC$$anonfun$2.apply(<console>:13)
at $line5.$read$$iwC$$iwC$$iwC$$iwC$$anonfun$2.apply(<console>:13)
at org.apache.spark.rdd.RDD$$anonfun$1.apply(RDD.scala:450)
at org.apache.spark.rdd.RDD$$anonfun$1.apply(RDD.scala:450)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:34)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:241)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:232)
at org.apache.spark.rdd.MappedRDD.compute(MappedRDD.scala:31)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:241)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:232)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:34)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:241)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:232)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:161)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:102)
at org.apache.spark.scheduler.Task.run(Task.scala:53)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$run$1.apply$mcV$sp(Executor.scala:213)
at org.apache.spark.deploy.SparkHadoopUtil$$anon$1.run(SparkHadoopUtil.scala:42)
at org.apache.spark.deploy.SparkHadoopUtil$$anon$1.run(SparkHadoopUtil.scala:41)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:415)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1548)
at org.apache.spark.deploy.SparkHadoopUtil.runAsUser(SparkHadoopUtil.scala:41)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:178)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
at java.lang.Thread.run(Thread.java:744)
答案 0 :(得分:5)
截至2014年9月1日,这是Spark的“开放式改进”。请参阅https://issues.apache.org/jira/browse/SPARK-3052。正如syrza在给定链接中指出的那样,当执行程序失败导致此消息时,关闭挂钩可能以不正确的顺序执行。我知道你将不得不进一步调查以找出问题的主要原因(即你的执行人失败的原因)。如果它是一个大的shuffle,它可能是一个内存不足的错误导致执行程序失败,然后导致Hadoop文件系统在其关闭钩子中关闭。因此,RecordReaders在执行该执行程序的任务时抛出“java.io.IOException:Filesystem closed”异常。我想它将在后续版本中得到修复,然后您将收到更多有用的错误消息:)
答案 1 :(得分:1)
调用DFSClient.close()
或DFSClient.abort()
,关闭客户端。然后,下一个文件操作会导致上述异常。
我会尝试找出调用close()
/ abort()
的内容。您可以在调试器中使用断点,或者修改Hadoop源代码以在这些方法中引发异常,这样您就可以获得堆栈跟踪。
答案 2 :(得分:0)
如果spark作业在群集上运行,则可以解决有关“文件系统已关闭”的异常。您可以将spark.executor.cores,spark.driver.cores和spark.akka.threads等属性设置为资源可用性的最大值w.r.t.当我的数据集非常大,JSON数据大约有2000万条记录时,我遇到了同样的问题。我用上面的属性修复它,它就像一个魅力。在我的例子中,我将这些属性分别设置为25,25和20。希望它有所帮助!!
参考链接: