给定一个numpy 2d数组(或矩阵),我想提取所有列,但第i个。
电子。 G。从
1 2 3 4
2 4 6 8
3 6 9 12
我想拥有,例如</ p>
1 2 3
2 4 6
3 6 9
或
1 2 4
2 4 8
3 6 12
我找不到这样做的pythonic方法。我现在只需
即可提取给定的列a[:,n]
或
a[:,[n,n+1,n+5]]
但是除了一个之外提取所有这些呢?
答案 0 :(得分:20)
使用排除最后一个元素的切片。
In [19]: a[:,:-1]
Out[19]:
array([[1, 2, 3],
[2, 4, 6],
[3, 6, 9]])
如果您想要的不是最后一个元素,我只需要构建一个列表来选择。
In [20]: selector = [x for x in range(a.shape[1]) if x != 2]
In [21]: a[:, selector]
Out[21]:
array([[ 1, 2, 4],
[ 2, 4, 8],
[ 3, 6, 12]])
http://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
答案 1 :(得分:20)
因为对于一般情况,您无论如何都要返回副本,您可能会发现自己使用np.delete
生成更易读的代码:
>>> a = np.arange(12).reshape(3, 4)
>>> np.delete(a, 2, axis=1)
array([[ 0, 1, 3],
[ 4, 5, 7],
[ 8, 9, 11]])
答案 2 :(得分:7)
看看numpy的advanced slicing
>>> import numpy as np
>>> a = np.array([[1,2,3,4], [2,4,6,8], [3,6,9,12]])
>>> a[:,np.array([True, True, False, True])]
array([[ 1, 2, 4],
[ 2, 4, 8],
[ 3, 6, 12]])
答案 3 :(得分:0)
已经给出的答案可以很容易地调整为选择除列列表之外的所有列,但这是几个明确的示例:
In [1]: import numpy as np
In [2]: a = np.arange(12).reshape(3, 4)
In [3]: a
Out[3]:
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
In [4]: drop_cols = [0, 3]
# option 1: delete the columns you don't want (like @Jaime)
# (this is really the most straightforward)
In [5]: np.delete(a, drop_cols, axis=1)
Out[5]:
array([[ 1, 2],
[ 5, 6],
[ 9, 10]])
# option 2: pass the indices of columns to keep (like @chrisb)
In [6]: a[:, [i for i in range(a.shape[1]) if i not in drop_cols]]
Out[6]:
array([[ 1, 2],
[ 5, 6],
[ 9, 10]])
# option 3: use an array of T/F for each col (like @Peter Gibson)
In [7]: a[:, [i not in drop_cols for i in range(a.shape[1])]]
Out[7]:
array([[ 1, 2],
[ 5, 6],
[ 9, 10]])