根据this,我们可以获得非单一群集的标签。
我用一个简单的例子尝试了这个。
import numpy as np
import scipy.cluster.hierarchy
import matplotlib.pyplot as plt
from scipy.cluster.hierarchy import dendrogram, linkage
mat = np.array([[ 0. , 1. , 3. ,0. ,2. ,3. ,1.],
[ 1. , 0. , 3. , 1., 1. , 2. , 2.],
[ 3., 3. , 0., 3. , 3., 3. , 4.],
[ 0. , 1. , 3., 0. , 2. , 3., 1.],
[ 2. , 1., 3. , 2., 0. , 1., 3.],
[ 3. , 2., 3. , 3. , 1. , 0. , 3.],
[ 1. , 2., 4. , 1. , 3., 3. , 0.]])
def llf(id):
if id < n:
return str(id)
else:
return '[%d %d %1.2f]' % (id, count, R[n-id,3])
linkage_matrix = linkage(mat, "complete")
dendrogram(linkage_matrix,
p=4,
leaf_label_func=llf,
color_threshold=1,
truncate_mode='lastp',
distance_sort='ascending')
plt.show()
什么是n,并在此计算?在下面的图表中,我需要知道谁在(3)和(2)下列出?
答案 0 :(得分:0)
我认为该部分的文档不是很清楚,其中的示例代码甚至无法运行。但很明显1表示第2次观察,(3)表示该节点有3次观察。
如果你想知道什么是3个障碍物。在第二个节点,如果这是你的问题:
In [51]:
D4=dendrogram(linkage_matrix,
color_threshold=1,
p=4,
truncate_mode='lastp',
distance_sort='ascending')
D7=dendrogram(linkage_matrix,
color_list=['g',]*7,
p=7,
truncate_mode='lastp',
distance_sort='ascending', no_plot=True)
from itertools import groupby
[list(group) for key, group in groupby(D7['ivl'],lambda x: x in D4['ivl'])]
Out[51]:
[['1'], ['6', '0', '3'], ['2'], ['4', '5']]
第二个节点包含obs。第7个,第1个和第4个,第2个节点包含第5和第6个观测值。