这是我的数据框
df <- structure(list(g1 = structure(c(1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L), .Label = c("A", "C"), class = "factor"), g2 = structure(c(1L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 2L), .Label = c("a", "b"), class = "factor"), v1 = 1:10, v2 = c(5, 5, 6, 2, 4, 4, 2, 1, 9, 8), v3 = c(29, 10, 56, 93, 20, 14, 12, 87, 67, 37)), .Names = c("g1", "g2", "v1", "v2", "v3"), row.names = c(NA, -10L), class = "data.frame")
g1 g2 v1 v2 v3
1 A a 1 5 29
2 A a 2 5 10
3 A a 3 6 56
4 A b 4 2 93
5 A b 5 4 20
6 C a 6 4 14
7 C a 7 2 12
8 C b 8 1 87
9 C b 9 9 67
10 C b 10 8 37
我想为组g1和g2(在这种情况下为Aa,Ab,Ca,Cb)的每个组合创建v1,v2和v3的相关矩阵。所以我想使用包Hmisc并与plyr结合
library(Hmisc)
library(plyr)
这有效(当然忽略了群体):
rcorr(as.matrix(df[,3:5]), type="pearson")
但这不是:
cor.matrix <- dlply(df, .(g1,g2), rcorr(as.matrix(df[,3:5]), type="pearson"))
Error:attempt to apply non-function
我做错了什么?
答案 0 :(得分:1)
如果每组有超过4个观察值(这就是为什么rbind
为df
加上df
另外2个df <- structure(list(g1 = structure(c(1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L),
.Label = c("A", "C"), class = "factor"),
g2 = structure(c(1L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 2L),
.Label = c("a", "b"), class = "factor"),
v1 = 1:10, v2 = c(5, 5, 6, 2, 4, 4, 2, 1, 9, 8),
v3 = c(29, 10, 56, 93, 20, 14, 12, 87, 67, 37)),
.Names = c("g1", "g2", "v1", "v2", "v3"), row.names = c(NA, -10L),
class = "data.frame")
df <- rbind(df, df, df)
library(Hmisc)
lapply(split(df, df[, 1:2]), function(x) {
rcorr(as.matrix(x[,3:5]), type="pearson")
})
的原因,这是有效的:
dlply(df, .(g1,g2), function(x) rcorr(as.matrix(x[,3:5]), type="pearson"))
编辑这有效:
{{1}}