prolog我必须制作一个计算魔法矩阵排列的程序

时间:2014-05-29 17:41:31

标签: prolog magic-square

我必须制作一个计算魔术矩阵的程序,我已经制作了我的代码并且它可以正常工作但我的置换非常慢。 我需要一个能帮助我的人更快

这是代码:

diabolico([A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P]) :- 
    permutar([1,14,3,16,5,12,13,15,9,10,11,6,7,2,8,4],[A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P]),
    A+B+C+D=:=34, E+F+G+H=:=34, I+J+K+L=:=34, M+N+O+P=:=34,
    A+E+I+M=:=34, B+F+J+N=:=34, C+G+K+O=:=34, D+H+L+P=:=34,
    M+B+G+L=:=34, I+N+C+H=:=34, E+J+O+D=:=34, A+F+K+P=:=34,
    P+C+F+I=:=34, L+O+B+E=:=34, H+K+N+A=:=34, D+G+J+M=:=34.   

permutar([],[]). 
permutar([X|Y], Z):-
    permutar(Y,L),
    insertar(X,L,Z). 

insertar(E,L,[E|L]). 
insertar(E, [X|Y], [X|Z]):-
    insertar(E, Y, Z).

3 个答案:

答案 0 :(得分:4)

您可以尝试使用排列/ 2,也许它比您更快(我不确定,应该对它进行基准测试)。无论如何,排列通常需要不同的方法,例如CLP(FD)。我复制了你的代码并对其进行了修改:

:- use_module(library(clpfd)).

diabolico([A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P]) :-
 Vs = [A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P],
 Vs ins 1..16,
 all_different(Vs),
 A+B+C+D#=34,
 E+F+G+H#=34,
 I+J+K+L#=34,
 M+N+O+P#=34,
 A+E+I+M#=34,
 B+F+J+N#=34,
 C+G+K+O#=34,
 D+H+L+P#=34,
 M+B+G+L#=34,
 I+N+C+H#=34,
 E+J+O+D#=34,
 A+F+K+P#=34,
 P+C+F+I#=34,
 L+O+B+E#=34,
 H+K+N+A#=34,
 D+G+J+M#=34,
 label(Vs).

writerows([]).
writerows([A,B,C,D|Rs]) :-
 format('~|~t~d~3+~|~t~d~3+~|~t~d~3+~|~t~d~3+~n', [A,B,C,D]),
 writerows(Rs).

这是一个示例:

?- diabolico(X), writerows(X).
  1  8 10 15
 12 13  3  6
  7  2 16  9
 14 11  5  4
X = [1, 8, 10, 15, 12, 13, 3, 6, 7|...] ;
  1  8 10 15
 14 11  5  4
  7  2 16  9
 12 13  3  6
X = [1, 8, 10, 15, 14, 11, 5, 4, 7|...] ;
  1  8 11 14
 12 13  2  7
  6  3 16  9
 15 10  5  4
X = [1, 8, 11, 14, 12, 13, 2, 7, 6|...] 
...

我对你的permutar / 2实施的称赞:它比排列/ 2好得多:

?- X=[1,2,3,4,5,6,7,8], time(aggregate(count,X^Y^permutation(X,Y),C)).
% 328,837 inferences, 0.171 CPU in 0.172 seconds (99% CPU, 1927406 Lips)
X = [1, 2, 3, 4, 5, 6, 7, 8],
C = 40320.

?- X=[1,2,3,4,5,6,7,8], time(aggregate(count,X^Y^permutar(X,Y),C)).
% 86,597 inferences, 0.079 CPU in 0.081 seconds (99% CPU, 1091190 Lips)
X = [1, 2, 3, 4, 5, 6, 7, 8],
C = 40320.
唉,那么我最初的建议完全没用......

答案 1 :(得分:2)

通过大幅修剪搜索空间,约束逻辑编程可以很好地解决这类问题。

ECLiPSe中的程序(可轻松翻译为与其他现代Prolog系统一起使用):

:- lib(ic).

diabolico([A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P]) :- 
    Vars = [A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P],
    Vars :: 1..16,
    alldifferent(Vars),
    A+B+C+D #= 34, E+F+G+H #= 34, I+J+K+L #= 34, M+N+O+P #= 34,
    A+E+I+M #= 34, B+F+J+N #= 34, C+G+K+O #= 34, D+H+L+P #= 34,
    M+B+G+L #= 34, I+N+C+H #= 34, E+J+O+D #= 34, A+F+K+P #= 34,
    P+C+F+I #= 34, L+O+B+E #= 34, H+K+N+A #= 34, D+G+J+M #= 34,
    labeling(Vars).

立即投入使用:

[eclipse]: diabolico([A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P]).
A = 1
B = 8
C = 10
D = 15
E = 12
F = 13
G = 3
H = 6
I = 7
J = 2
K = 16
L = 9
M = 14
N = 11
O = 5
P = 4
Yes (0.02s cpu, solution 1, maybe more)

答案 2 :(得分:0)

takeout(H,[H|R],R).
takeout(H,[F|S],[F|R]) :- takeout(H,S,R).
perm([],[]).
perm([H|T],S) :- perm(T,R), takeout(H,S,R).  
line([X,Y,Z], S) :- S is X+Y+Z.
magic([A,B,C, D,E,F, G,H,I]) :- line([A,B,C],S), line([D,E,F],S), line([G,H,I],S), line([A,D,G],S), line([B,E,H],S), line([C,F,I],S).
solve(S) :- perm([1,2,3,4,5,6,7,8,9],S), magic(S).

可以使用以下示例调用解决9 * 9平方:

?- solve([1,B,C,D,E,2,G,3,J]).

将显示:

B = 8,
C = 6,
D = 9,
E = 4,
G = 5,
J = 7 ;
B = 5,
C = 9,
D = 6,
E = 7,
G = 8,
J = 4 ;
false.