在Slidify中继续编号列表

时间:2014-05-25 19:37:06

标签: r r-markdown slidify

如何在slidify

的新幻灯片上继续编号列表

我的代码如下:

---
title       : Another Introductory R Session
subtitle    : 
author      : Christopher Meaney
job         : Biostatistician, University of Toronto
framework   : io2012        # {io2012, html5slides, shower, dzslides, ...}
highlighter : highlight.js  # {highlight.js, prettify, highlight}
hitheme     : tomorrow      # 
widgets     : [mathjax]            # {mathjax, quiz, bootstrap}
mode        : selfcontained # {standalone, draft}

--- .nobackground 

1. Item 1
2. Item 2
3. Item 3
4. Item 4

--- .nobackground

5. Create the following matrix `mat <- matrix(1:9,ncol=3)`.
  * How many ways can you think of to get the column means of `mat`? 
  * Same idea with row means.

6. In matrix notation the OLS/MLE solution for the regression coeffiicients of a linear regression model can be expressed as:

$$ \hat{\boldsymbol\beta} = (\mathbf{X}^{\rm T}\mathbf{X})^{-1} \mathbf{X}^{\rm T}\mathbf{y} $$

* Using the cars dataset investigate the relationship between distance (response variable) as a function of speed (independent variable).
* Create the vector `y` and the design matrix `X`. Dont forget the leading column vector of 1's. Using all of R's fancy matrix algebra functions estimate the $\hat{\boldsymbol\beta}$ vector. 
  * Compare your matrix algebra approach with the following code: `lm(dist~speed,data=cars)`

我希望第二张幻灯片上的列表以5开头。第5项.6。第6项......依此类推。但是列表编号重置为1.项目5. 2.项目6等等。

1 个答案:

答案 0 :(得分:2)

可能最简单的方法是在幻灯片内容后添加一些javascript:

--- .nobackground #foo

5. Create the following matrix `mat <- matrix(1:9,ncol=3)`.
  * How many ways can you think of to get the column means of `mat`? 
  * Same idea with row means.

6. In matrix notation the OLS/MLE solution for the regression coeffiicients of a linear regression model can be expressed as:

$$ \hat{\boldsymbol\beta} = (\mathbf{X}^{\rm T}\mathbf{X})^{-1} \mathbf{X}^{\rm T}\mathbf{y} $$

* Using the cars dataset investigate the relationship between distance (response variable) as a function of speed (independent variable).
* Create the vector `y` and the design matrix `X`. Dont forget the leading column vector of 1's. Using all of R's fancy matrix algebra functions estimate the $\hat{\boldsymbol\beta}$ vector. 
* Compare your matrix algebra approach with the following code: `lm(dist~speed,data=cars)`


<script>
$("#foo ol").attr('start', 5)
</script>

---

其他方法:

你可以使用html

---
<ol start="5">
    <li>Item 5</li>
    <li>Item 6</li>
</ol>
---

slidify example

或者您可以使用CSS:

--- .nobackground #foo

5. Create the following matrix `mat <- matrix(1:9,ncol=3)`.
  * How many ways can you think of to get the column means of `mat`? 
  * Same idea with row means.

6. In matrix notation the OLS/MLE solution for the regression coeffiicients of a linear regression model can be expressed as:

$$ \hat{\boldsymbol\beta} = (\mathbf{X}^{\rm T}\mathbf{X})^{-1} \mathbf{X}^{\rm T}\mathbf{y} $$

* Using the cars dataset investigate the relationship between distance (response variable) as a function of speed (independent variable).
* Create the vector `y` and the design matrix `X`. Dont forget the leading column vector of 1's. Using all of R's fancy matrix algebra functions estimate the $\hat{\boldsymbol\beta}$ vector. 
* Compare your matrix algebra approach with the following code: `lm(dist~speed,data=cars)`

---

现在在您的assets / css中添加一个带有

的styles.css
#foo OL {
  counter-reset: item 4;
}
#foo OL>LI { display: block }
#foo OL>LI:before {
        content: counter(item) ". ";
        counter-increment: item;
        display:block;
        }

或者,您可以在幻灯片中将样式作为HTML插入

<style>
#foo OL {
  counter-reset: item 4;
}
#foo OL>LI { display: block }
#foo OL>LI:before {
      content: counter(item) ". ";
        counter-increment: item;
        display:block;
        }
</style>

enter image description here