在python中拟合负二项式

时间:2014-05-22 20:31:44

标签: python statistics scipy distribution statsmodels

在scipy中,不支持使用数据拟合负二项分布 (可能是因为scipy中的负二项式只是离散的)。

对于正常分布,我会这样做:

from scipy.stats import norm
param = norm.fit(samp)

在任何其他库中是否存在类似“准备使用”的功能?

3 个答案:

答案 0 :(得分:6)

不仅因为它是离散的,还因为最大似然拟合负二项式可能非常复杂,特别是对于额外的位置参数。这就是没有为它提供.fit()方法的原因(以及Scipy中的其他离散分布),这是一个例子:

In [163]:

import scipy.stats as ss
import scipy.optimize as so
In [164]:
#define a likelihood function
def likelihood_f(P, x, neg=1):
    n=np.round(P[0]) #by definition, it should be an integer 
    p=P[1]
    loc=np.round(P[2])
    return neg*(np.log(ss.nbinom.pmf(x, n, p, loc))).sum()
In [165]:
#generate a random variable
X=ss.nbinom.rvs(n=100, p=0.4, loc=0, size=1000)
In [166]:
#The likelihood
likelihood_f([100,0.4,0], X)
Out[166]:
-4400.3696690513316
In [167]:
#A simple fit, the fit is not good and the parameter estimate is way off
result=so.fmin(likelihood_f, [50, 1, 1], args=(X,-1), full_output=True, disp=False)
P1=result[0]
(result[1], result[0])
Out[167]:
(4418.599495886474, array([ 59.61196161,   0.28650831,   1.15141838]))
In [168]:
#Try a different set of start paramters, the fit is still not good and the parameter estimate is still way off
result=so.fmin(likelihood_f, [50, 0.5, 0], args=(X,-1), full_output=True, disp=False)
P1=result[0]
(result[1], result[0])
Out[168]:
(4417.1495981801972,
 array([  6.24809397e+01,   2.91877405e-01,   6.63343536e-04]))
In [169]:
#In this case we need a loop to get it right
result=[]
for i in range(40, 120): #in fact (80, 120) should probably be enough
    _=so.fmin(likelihood_f, [i, 0.5, 0], args=(X,-1), full_output=True, disp=False)
    result.append((_[1], _[0]))
In [170]:
#get the MLE
P2=sorted(result, key=lambda x: x[0])[0][1]
sorted(result, key=lambda x: x[0])[0]
Out[170]:
(4399.780263084549,
 array([  9.37289361e+01,   3.84587087e-01,   3.36856705e-04]))
In [171]:
#Which one is visually better?
plt.hist(X, bins=20, normed=True)
plt.plot(range(260), ss.nbinom.pmf(range(260), np.round(P1[0]), P1[1], np.round(P1[2])), 'g-')
plt.plot(range(260), ss.nbinom.pmf(range(260), np.round(P2[0]), P2[1], np.round(P2[2])), 'r-')
Out[171]:
[<matplotlib.lines.Line2D at 0x109776c10>]

enter image description here

答案 1 :(得分:1)

我知道这个线程已经很老了,但是当前的读者可能想看看为此目的而制作的这个仓库:https://github.com/gokceneraslan/fit_nbinom

这里还有一个实现,尽管它是一个更大的程序包的一部分:https://github.com/ernstlab/ChromTime/blob/master/optimize.py

答案 2 :(得分:0)