我正在尝试迭代由pandas.DataFrame.hist重新调整的matplotlib.axes.AxesSubplot数组,以使每个子组合图都具有逻辑性。以下示例代码不起作用
from pandas import DataFrame
import numpy as np
import matplotlib.pyplot as plt
x = np.random.uniform(0, 100, size=1000)
y = x *x + 50*x*np.random.randn(1000)
z = x * y + 50*y*np.random.randn(1000)
frame = DataFrame({'z' : z,'x' : x , 'y' : y})
Histograms = frame.hist(bins=50)
for axis in np.nditer(Histograms,"refs_ok"):
axis.set_yscale("log", nonposy='clip')
plt.show()
答案 0 :(得分:2)
使用flat
iter:
for axis in Histograms.flat:
axis.set_yscale("log", nonposy='clip')
答案 1 :(得分:0)
"""
Demo of the histogram (hist) function with a few features.
In addition to the basic histogram, this demo shows a few optional features:
* Setting the number of data bins
* The ``normed`` flag, which normalizes bin heights so that the integral of
the histogram is 1. The resulting histogram is a probability density.
* Setting the face color of the bars
* Setting the opacity (alpha value).
"""
import numpy as np
import matplotlib.mlab as mlab
import matplotlib.pyplot as plt
# example data
mu = 100 # mean of distribution
sigma = 15 # standard deviation of distribution
x = mu + sigma * np.random.randn(10000)
num_bins = 50
n, bins, patches = plt.hist(x, num_bins, normed=1, facecolor='green', alpha=0.5)
plt.plot(bins, y, 'r--')