我是pyMC的新手,我仍然无法使用pyMC构建MCMC的结构。我想建立一个链,我很困惑如何一起定义我的参数和对数似然函数。我的卡方函数由下式给出:
其中和分别是观察数据和对应错误,是具有四个自由参数的模型,参数是非线性的。
X
和Y
的优先级统一如下:
import pymc as pm
import numpy as np
import math
import random
@pm.stochastic(dtype=np.float, observed=False, trace=True)
def Xpos(value=1900,x_l=1851,x_h=1962):
"""The probable region of the position of halo centre"""
def logp(value,x_l,x_h):
if ((value>x_h) or (value<x_l)):
return -np.inf
else:
return -np.log(x_h-x_l+1)
def random(x_l,x_h):
return np.round((x_h-x_l)*random.random())+x_l
@pm.stochastic(dtype=np.float, observed=False, trace=True)
def Ypos(value=1900,y_l=1851,y_h=1962):
"""The probable region of the position of halo centre"""
def logp(value,y_l,y_h):
if ((value>y_h) or (value<y_l)):
return -np.inf
else:
return -np.log(y_h-y_l+1)
def random(y_l,y_h):
return np.round((y_h-y_l)*random.random())+y_l
但M
和C
如下:
其中C
的平均值是通过
对于M
和C
,先验应该如下所示:
M=math.pow(10,15)*pm.Exponential('mass', beta=math.pow(10,15))
@pm.stochastic(dtype=np.float, observed=False, trace=True)
def concentration(value=4, zh, M200):
"""logp for concentration parameter"""
def logp(value=4.,zh, M200):
if (value>0):
x = np.linspace(math.pow(10,13),math.pow(10,16),200 )
prob=expon.pdf(x,loc=0,scale=math.pow(10,15))
conc = [5.26/(1.+zh)*math.pow(x[i]/math.pow(10,14),-0.1) for i in range(len(x))]
mu_c=0
for i in range(len(x)):
mu_c+=prob[i]*conc[i]/sum(prob)
if (M200 < pow(10,15)):
tau=1./(0.09*0.09)
else:
tau=1./(0.06*0.06)
return pm.lognormal_like(value, mu_c, tau)
else
return -np.inf
def random(mu_c,tau):
return np.random.lognormal(mu_c, tau, 1)
参数z
也是C
之前的常量。我想知道如何定义的可能性,是否应该将其称为@Deterministic variable
?我是否以正确的方式将M
和C
定义为先验信息?
如果有人给我一些提示,告诉我如何将这些参数与给定的先验结合起来,我将不胜感激。
答案 0 :(得分:1)
#priors
@pm.stochastic(dtype=np.float, observed=False, trace=True)
def Xpos(value=1900,x_l=1800,x_h=1950):
"""The probable region of the position of halo centre"""
if ((value>x_h) or (value<x_l)):
return -np.inf
else:
return -np.log(x_h-x_l+1)
@pm.stochastic(dtype=np.float, observed=False, trace=True)
def Ypos(value=1750,y_l=1200,y_h=2000):
"""The probable region of the position of halo centre"""
def logp(value,y_l,y_h):
if ((value>y_h) or (value<y_l)):
return -np.inf
else:
return -np.log(y_h-y_l+1)
M=math.pow(10,15)*pm.Exponential('mass', beta=math.pow(10,15))
@deterministic
def sigma(value = 1, M=M):
if M < 10**15:
return .09
else:
return .06
cExpected = 5.26/(1+z)*(M/math.pow(10,14))**(-.1) # based on Neto et al. 2007
concentration = Lognormal("concentration", cExpected, sigma)
#model
@pm.deterministic( name='reduced_shear', dtype=np.float, observed=False, trace = True )
def reduced_shear(x=Xpos,y=Ypos,mass=M,conc=concentration):
nfw = NFWHalo(mass,conc,zh=0.128,[x,y])
g1tot=0;g2tot=0
for i in range(len(z)):
g1,g2,magnification=nfw.getLensing( gal_pos, z[i])
g1tot+=g1*redshift_pdf[i]/sum(redshift_pdf)
g2tot+=g2*redshift_pdf[i]/sum(redshift_pdf)
theta=arctan2(gal_ypos - Ypos, gal_xpos - Xpos)
value=-g1tot*cos(2*theta)-g2tot*sin(2*theta) #tangential shear
return value
@pm.deterministic( name='reduced_shear', dtype=np.float, observed=False, trace = True )
def tau_shear(Xpos,Ypos,M,concentration):
nfw = NFWHalo(M,concentration,zh=0.128,[Xpos,Ypos])
g1tot=0;g2tot=0
for i in range(len(z)):
g1,g2,magnification=nfw.getLensing( gal_pos, z[i])
g1tot+=g1*redshift_pdf[i]/sum(redshift_pdf)
g2tot+=g2*redshift_pdf[i]/sum(redshift_pdf)
theta=arctan2(gal_ypos - Ypos, gal_xpos - Xpos)
gt=-g1tot*cos(2*theta)-g2tot*sin(2*theta)
g_squared=g1tot**2+g2tot**2
delta_abse=sqrt(delta_e1**2+delta_e1**22)
value=(1-g_squared)*delta_abse
return value
tau = pm.Normal('tau', tau_shear, 0.2)
#likelihood
obs = pm.Normal("obs", mu=reduced_shear, tau, value=data, observed=True)