如何为groupby DataFrame创建滚动百分比

时间:2014-05-20 00:45:45

标签: python pandas

我正在尝试计算每种产品按月变化的百分比。这是我到目前为止所拥有的。我有一个涉及单个产品的DataFrame。我很难理解如何将计算应用于包含许多产品和数月的结果集。

示例数据框:

product_desc    activity_month    prod_count
product_a       1/1/2014          53
product_b       1/1/2014          42
product_c       1/1/2014          38
product_a       2/1/2014          26
product_b       2/1/2014          48
product_c       2/1/2014          39
product_a       3/1/2014          41
product_b       3/1/2014          35
product_c       3/1/2014          50

我需要了解的是数据框,按月添加的product_desc百分比变化:

product_desc    activity_month   prod_count pct_change
product_a       1/1/2014         53 
product_a       2/1/2014         26         0.490566038
product_a       3/1/2014         41         1.576923077
product_b       1/1/2014         42 
product_b       2/1/2014         48         1.142857143
product_b       3/1/2014         35         0.729166667
product_c       1/1/2014         38 
product_c       2/1/2014         39         1.026315789
product_c       3/1/2014         50         1.282051282

我可以使用单个product_desc在数据框架上计算这个:

df['change_rate1'] = df['prod_count'].shift(-1)/df['prod_count']
df['pct_change'] = df['change_rate1'].shift(1)
df = df.drop('change_rate1',1)

以下是我现在正在尝试的内容:

df_grouped = df.groupby(['product_desc','activity_month'])

for product_desc, activity_month in df_grouped:
   df['change_rate1'] = df_grouped['prod_count'].shift(-1)/df_grouped['prod_count']

但是,我在for语句的最后一行返回'NotImplementedError'。

有关如何正确计算此值的任何建议都表示赞赏。

1 个答案:

答案 0 :(得分:5)

看起来好像在小组内,每月有一次观察,你想要从一个月到下一个月的百分比变化。您可以使用groupby/apply对“product_desc”进行分组,然后使用内置的pct_change()方法来执行此操作:

>>> df['pct_ch'] = df.groupby('product_desc')['prod_count'].pct_change() + 1

注意,我在pct_change()方法中添加了1,因为它计算了净百分比变化。我将打印出一个已排序的版本,以便它符合您的预期输出:

>>> df.sort('product_desc')

  product_desc activity_month  prod_count    pct_ch
0    product_a     2014-01-01          53       NaN
3    product_a     2014-02-01          26  0.490566
6    product_a     2014-03-01          41  1.576923
1    product_b     2014-01-01          42       NaN
4    product_b     2014-02-01          48  1.142857
7    product_b     2014-03-01          35  0.729167
2    product_c     2014-01-01          38       NaN
5    product_c     2014-02-01          39  1.026316
8    product_c     2014-03-01          50  1.282051

pandas的旧版本上,您可能需要这样做:

>>> df['pct_ch'] = df.groupby('product_desc')['prod_count'].apply(lambda x: x.pct_change() + 1)

或者你可以按照你的建议进行小修改:

>>> df['pct_ch'] = df['prod_count'] / df.groupby('product_desc')['prod_count'].shift(1)
>>> df.sort('product_desc')

  product_desc activity_month  prod_count    pct_ch
0    product_a     2014-01-01          53       NaN
3    product_a     2014-02-01          26  0.490566
6    product_a     2014-03-01          41  1.576923
1    product_b     2014-01-01          42       NaN
4    product_b     2014-02-01          48  1.142857
7    product_b     2014-03-01          35  0.729167
2    product_c     2014-01-01          38       NaN
5    product_c     2014-02-01          39  1.026316
8    product_c     2014-03-01          50  1.282051

您无需在df['prod_count']内引用groupby,也不会对该列做任何事情。

pandas的旧版本上,您可能需要这样做:

>>> df['pct_ch'] = df.groupby('product_desc')['prod_count'].apply(lambda x: x/x.shift(1))