我一直在努力从目录中读取我的数据并将函数转换为foreach循环,
filelist <- dir(pattern = "*.omf")
readfiles <- function(m){for(k in 1:length(filelist))
file<-filelist[[k]]
data <- read.table("filelist[[k]]", skip=grep('# Begin: Data Text', readLines("filelist[[k]]")),na.strings=c("NA", "-", "?"),colClasses="numeric")
my <- as.matrix(data[1:57600,2]);
mesh <- array(my, dim = c(120,60,8));
Ms<-1350*10^3 # A/m
asd2=(mesh[70:75,24:36 ,2])/Ms; # in A/m
ort_my<- mean(asd2);
return(ort_my)
}
# The main function called once each loop
main.fun <- function(m)
{
# Call two other functions
return(readfiles(m))
}
# Compute the values (odd numbers from 5 to 23) using a foreach loop
compute.cluster <- function(m)
{
values <- foreach(m=1:length(filelist),.combine = "c") %dopar%
{
main.fun(m)
}
return(values)
}
# Start the cluster and register with doSNOW (node names are just examples)
cl <- makeCluster(12, type = "SOCK")
clusterExport(cl, c("main.fun", "readfiles","filelist"))
registerDoSNOW(cl)
print(compute.cluster())
# Stop the cluster
stopCluster(cl)
当我执行此代码时,我只获得第一个读取行的结果(m函数)。实际上,结果只适用于我的第一个数据。但是对于其他人来说,每个k都应该是不同的。
> print(compute.cluster())
[,1]
result.1 -0.2530708
result.2 -0.2530708
result.3 -0.2530708
result.4 -0.2530708
result.5 -0.2530708
result.6 -0.2530708
result.7 -0.2530708
result.8 -0.2530708
result.9 -0.2530708
result.10 -0.2530708
result.11 -0.2530708
result.12 -0.2530708
result.13 -0.2530708
result.14 -0.2530708
result.15 -0.2530708
result.16 -0.2530708
result.17 -0.2530708
result.18 -0.2530708
result.19 -0.2530708
result.20 -0.2530708
result.21 -0.2530708
result.22 -0.2530708
result.23 -0.2530708
result.24 -0.2530708
result.25 -0.2530708
result.26 -0.2530708
result.27 -0.2530708
result.28 -0.2530708
result.29 -0.2530708
result.30 -0.2530708
result.31 -0.2530708
result.32 -0.2530708
result.33 -0.2530708
result.34 -0.2530708
result.35 -0.2530708
result.36 -0.2530708
result.37 -0.2530708
result.38 -0.2530708
result.39 -0.2530708
result.40 -0.2530708
result.41 -0.2530708
result.42 -0.2530708
result.43 -0.2530708
result.44 -0.2530708
result.45 -0.2530708
result.46 -0.2530708
result.47 -0.2530708
result.48 -0.2530708
result.49 -0.2530708
result.50 -0.2530708
result.51 -0.2530708
result.52 -0.2530708
result.53 -0.2530708
result.54 -0.2530708
result.55 -0.2530708
result.56 -0.2530708
result.57 -0.2530708
result.58 -0.2530708
result.59 -0.2530708
result.60 -0.2530708
result.61 -0.2530708
result.62 -0.2530708
result.63 -0.2530708
result.64 -0.2530708
result.65 -0.2530708
result.66 -0.2530708
result.67 -0.2530708
result.68 -0.2530708
result.69 -0.2530708
result.70 -0.2530708
停止群集
STOPCLUSTER(CL)
任何帮助表示赞赏!
谢谢!
答案 0 :(得分:0)
您是否已连续测试过您的功能?他们做了你期望他们做的事吗?
我对你的第一个函数(已编辑)中的代码感到有些困惑:
file <- filelist[[k]]
data <- read.table("filelist[[k]]")
这会将文件名(字符串)分配给变量文件,但以下行尝试从名为&#34; filelist [[k]]&#34;的文件中读取数据。我几乎100%肯定这不是你想要的......当然,沿着这些方向的东西会更合适:
file <- filelist[[k]]
data <- read.table(file)
或只是
data <- read.table(filelist[[k]])
除此之外,我的建议是让代码适用于串行循环,然后再担心尝试并行运行。
此致 安德鲁。
答案 1 :(得分:0)
我看了你的代码。但我无法使用上面的示例代码运行它。 如果您制作了可重复的示例,那么您更有可能找人帮助您。 请参阅:How to make a great R reproducible example?
此示例适用于伪造数据。但我不确定它是你想要的。
data.list <- list()
for (i in 1:10){
data.list[[i]] <- matrix(data= rnorm(100,1),50,2)
}
read.dat <- function(m){
out <- rep(1:length(data.list))
for(k in 1:length(data.list)){
my <- as.matrix(data.list[[k]]);
ort_my<- mean(my);
out[k] <- ort_my
}
return(out)
}
# The main function called once each loop
main.fun <- function(m)
{
# Call two other functions
return(read.dat(m))
}
# Start the cluster and register with doSNOW (node names are just examples)
cl <- makeCluster(12, type = "SOCK")
clusterExport(cl, c("main.fun", "read.dat","data.list"))
registerDoSNOW(cl)
values <- matrix(NA,length(data.list),10)
foreach(m=1:length(data.list),.combine = "c") %dopar% {
values[m,] <- main.fun()}
[1] 1.1507491 1.1226257 0.7971620 1.0954047 0.9954982 0.9721017 0.9738546 0.9596752
[9] 0.9470697 0.9787103 1.1507491 1.1226257 0.7971620 1.0954047 0.9954982 0.9721017
[17] 0.9738546 0.9596752 0.9470697 0.9787103 1.1507491 1.1226257 0.7971620 1.0954047
[25] 0.9954982 0.9721017 0.9738546 0.9596752 0.9470697 0.9787103 1.1507491 1.1226257
[33] 0.7971620 1.0954047 0.9954982 0.9721017 0.9738546 0.9596752 0.9470697 0.9787103
[41] 1.1507491 1.1226257 0.7971620 1.0954047 0.9954982 0.9721017 0.9738546 0.9596752
[49] 0.9470697 0.9787103 1.1507491 1.1226257 0.7971620 1.0954047 0.9954982 0.9721017
[57] 0.9738546 0.9596752 0.9470697 0.9787103 1.1507491 1.1226257 0.7971620 1.0954047
[65] 0.9954982 0.9721017 0.9738546 0.9596752 0.9470697 0.9787103 1.1507491 1.1226257
[73] 0.7971620 1.0954047 0.9954982 0.9721017 0.9738546 0.9596752 0.9470697 0.9787103
[81] 1.1507491 1.1226257 0.7971620 1.0954047 0.9954982 0.9721017 0.9738546 0.9596752
[89] 0.9470697 0.9787103 1.1507491 1.1226257 0.7971620 1.0954047 0.9954982 0.9721017
[97] 0.9738546 0.9596752 0.9470697 0.9787103
# Stop the cluster
stopCluster(cl)