我有一个源自df.groupby().size()
操作的DataFrame,如下所示:
Localization RNA level
cytoplasm 1 Non-expressed 7
2 Very low 13
3 Low 8
4 Medium 6
5 Moderate 8
6 High 2
7 Very high 6
cytoplasm & nucleus 1 Non-expressed 5
2 Very low 8
3 Low 2
4 Medium 10
5 Moderate 16
6 High 6
7 Very high 5
cytoplasm & nucleus & plasma membrane 1 Non-expressed 6
2 Very low 3
3 Low 3
4 Medium 7
5 Moderate 8
6 High 4
7 Very high 1
我想要做的是计算单独的事件(即来自.size()
的最后一列)占适用Localization
中出现总次数的百分比。
例如:cytoplasm
本地化共有50次出现(7 + 13 + 8 + 6 + 8 + 2 + 6),Non-expressed
和Very low
产生14和26%分别为Localization
RNA水平。
有这样做的好方法吗?我一直在用它认为是一种非常迂回的方式,即为每个{{1}}创建一个新的DataFrame并从那里开始工作,但是有很多行和必须合并所有的问题结果是DataFrames到底。我希望至少有一种更聪明的方法!
答案 0 :(得分:11)
以下是基于pandas groupby
,sum
函数的完整示例。
基本思想是基于'Localization'
对数据进行分组,并在组上应用函数。
import pandas as pd
from StringIO import StringIO
#For Python 3: from io import StringIO
data = \
"""Localization,RNA level,Size
cytoplasm ,1 Non-expressed, 7
cytoplasm ,2 Very low ,13
cytoplasm ,3 Low , 8
cytoplasm ,4 Medium , 6
cytoplasm ,5 Moderate , 8
cytoplasm ,6 High , 2
cytoplasm ,7 Very high , 6
cytoplasm & nucleus ,1 Non-expressed, 5
cytoplasm & nucleus ,2 Very low , 8
cytoplasm & nucleus ,3 Low , 2
cytoplasm & nucleus ,4 Medium ,10
cytoplasm & nucleus ,5 Moderate ,16
cytoplasm & nucleus ,6 High , 6
cytoplasm & nucleus ,7 Very high , 5
cytoplasm & nucleus & plasma membrane,1 Non-expressed, 6
cytoplasm & nucleus & plasma membrane,2 Very low , 3
cytoplasm & nucleus & plasma membrane,3 Low , 3
cytoplasm & nucleus & plasma membrane,4 Medium , 7
cytoplasm & nucleus & plasma membrane,5 Moderate , 8
cytoplasm & nucleus & plasma membrane,6 High , 4
cytoplasm & nucleus & plasma membrane,7 Very high , 1"""
# Create the dataframe
df = pd.read_csv(StringIO(data))
df['Localization'].str.strip()
df['RNA level'].str.strip()
df['Size'].astype(int)
df['Percent'] = df.groupby('Localization')['Size'].transform(lambda x: x/sum(x))