逻辑与逻辑分布的似然比检验r

时间:2014-05-13 08:54:12

标签: r statistics max statistical-test

我正在尝试验证我的数据在具有逻辑copula的双变量GEV和bilogistic copula之间的更好估计分布。

我通过可能性定量测试进行操作,并且当无效的假设被拒绝时,它仅显示出良好的p值。我认为这是由于代码错误造成的。

请帮助

数据:

 max
      [,1]  [,2]  [,3]  [,4]  [,5]  [,6]  [,7]  [,8]  [,9]
 [1,] 1958 163.0 182.3 178.0 254.1 165.5 230.6 164.0 172.0
 [2,] 1959 105.0 119.6  91.5  72.0  71.2  85.0 138.0  64.8
 [3,] 1960 125.0 159.4 200.0 105.0 118.5 106.4 109.0  84.8
 [4,] 1961 130.5 127.8 106.8 106.3 109.5 141.6  97.0  90.5
 [5,] 1962 149.2 154.3  93.0  57.4  66.5 100.4 177.0  54.0
 [6,] 1963 194.8 199.2 113.0 136.0 129.7 232.0 170.0 140.0
 [7,] 1964 176.2 138.2 125.8 113.5 129.0 166.4 138.0 114.0
 [8,] 1965 250.2 272.0 102.2  74.5  87.0 117.4 211.1  69.5
 [9,] 1966  84.7 188.4  76.5  52.0  73.7 116.1  90.5  57.0
[10,] 1967  65.2  98.0  82.4  63.0  67.5  79.7  86.0  54.8
[11,] 1968 115.2 217.0 120.8  58.0  63.8 123.1  71.2  56.0
[12,] 1969  87.8 128.0 110.0 126.0 104.8 125.2  95.0 107.0
[13,] 1970  96.0 145.0 240.0 170.0 154.8 187.9  95.0 108.0
[14,] 1971 117.3 148.0 170.0  67.7  81.6 107.2 135.0  70.7
[15,] 1972 114.0 115.4 118.0 106.4 118.0 139.1 108.0 108.0
[16,] 1973 126.0 165.2 170.0  99.3  80.0  98.6 164.3  75.0
[17,] 1974 103.4 134.6  98.0  64.6  76.0 237.4 127.3  63.8
[18,] 1975  92.7  93.6  88.0  54.0  55.8  79.2  69.0  45.0
[19,] 1976 132.8 235.4 170.0 176.0 150.0 177.6 212.0 145.0
[20,] 1977 112.1 148.6 187.7  98.6 120.0 278.0 126.0  89.0
[21,] 1978  85.5 117.2 137.5 103.1 120.5 133.8 110.5 107.0
[22,] 1979 124.7 138.5 124.0 105.0 104.0 124.0 107.5 102.0
[23,] 1980 219.5 184.0  75.5  65.7  80.5  90.0 148.2  63.0
[24,] 1981  78.0 127.0 119.5  69.0  89.0  90.0 100.0  74.0
[25,] 1982 210.0 279.0 230.0  51.0  90.0 134.5 141.0  62.0
[26,] 1983  93.8  96.2 162.0  90.0  92.0  63.0 101.8 110.0
[27,] 1984 119.9 180.6 236.0  66.0 126.0 140.0 119.0  78.0
[28,] 1985  61.1  86.0  97.0  38.5  48.0  73.0  66.4  39.0
[29,] 1986  83.0 168.8 114.5  74.0  91.5 120.0  97.3  71.4
[30,] 1987 117.5 147.5 108.1  88.5 105.0 130.0 130.0 125.2
[31,] 1988  84.6 126.5 117.0  87.5  88.8  99.0  89.3  97.0
[32,] 1989  81.0 143.2 120.0  48.5  51.6  85.0  85.0  54.0
[33,] 1990  75.5  93.0  65.0  51.5  56.5  70.0  63.7  44.0
[34,] 1991  85.0 112.3  90.0  61.5  65.5  42.0  82.3  72.0
[35,] 1992 150.0 222.0 160.0 215.0 192.0 211.0 202.8 199.0
[36,] 1993 128.5 152.0 120.0 141.0  71.0  83.1 227.2 143.9
[37,] 1994 249.1 244.0 190.0 132.0 124.5 221.0 165.0 106.0
[38,] 1995  96.1 127.0 200.0 164.0 219.0 256.4 139.5 125.0
[39,] 1996 108.3 181.0 133.0  70.5  86.5 144.0 135.0  83.4
[40,] 1997  89.0 120.6 150.0 155.0 145.3 136.0 150.0 230.0
[41,] 1998 112.1 176.5 190.0 139.0 159.2 130.0 129.2 105.4
[42,] 1999 142.5 199.5 200.0  78.0  95.7 108.7 172.5  60.8
[43,] 2000 103.0 163.3 140.0 135.5 126.4 126.6 104.0  81.0

代码:

library(evd)
c=combn(1:8,2)
bgev_log=list(length=28)
for(i in 1:28){
    bgev_log[[i]]=fbvevd(cbind(max[,c[1,i]+1],max[,c[2,i]+1]),model="log")  
}
bgev_bilog=list(length=28)
for(i in 1:28){
    bgev_bilog[[i]]=fbvevd(cbind(max[,c[1,i]+1],max[,c[2,i]+1]),model="bilog",std.err=FALSE)
}

trvs=function(log,bilog){
    D=2*(abs(logLik(log)-logLik(bilog)))
    return(D)
}
trvsr=vector(length=28)
for(i in 1:28){
    trvsr[i]=trvs(bgev_log[[i]],bgev_bilog[[i]])
}

p.val=vector(length=28)
for(i in 1:28){
    p.val[i]=pchisq(trvsr[i], 1, lower.tail=FALSE) 
}

modele=vector(length=28)
modele[which(trvsr<qchisq(.95, df=1))]='log'
modele[which(trvsr>=qchisq(.95, df=1))]='bilog'

sig=vector(length=28)
sig[which(p.val<=0.03)]='***'
sig[which(p.val<=0.05 & p.val>0.03) ]='**'
sig[which(p.val<=0.06 & p.val>0.05) ]='*'
sig[which(p.val>0.06) ]=' '

输出:

输出:

trvsr
 [1] 0.093562490 1.592100173 4.433786405 0.285696128 0.017787392
 [6] 0.025239761 1.200461025 0.232100874 4.899640061 0.502523168
[11] 0.494979289 0.590806114 0.576494213 7.873337183 6.239519942
[16] 1.001118715 0.969221050 3.148315326 0.001530167 2.025349835
[21] 1.431512991 0.170563364 2.369423446 2.918107515 0.496675317
[26] 1.870034511 0.251993649 3.849875976
p.val
 [1] 0.759696119 0.207026334 0.035234261 0.592991846 0.893901259
 [6] 0.873771088 0.273229554 0.629970419 0.026862294 0.478393557
[11] 0.481714526 0.442107569 0.447689768 0.005016898 0.012493033
[16] 0.317039963 0.324874524 0.076005396 0.968796832 0.154693296
[21] 0.231517676 0.679611613 0.123732742 0.087590537 0.480964613
[26] 0.171471127 0.615674773 0.049749669
sig
 [1] " "   " "   "**"  " "   " "   " "   " "   " "   "***" " "  
[11] " "   " "   " "   "***" "***" " "   " "   " "   " "   " "  
[21] " "   " "   " "   " "   " "   " "   " "   "**" 

0 个答案:

没有答案