Lucene自定义TokenStream

时间:2014-05-08 12:07:25

标签: java text lucene analysis

我正在使用Lucene计算单词(参见下面的示例)。

我的问题是如何在Lucene中设置我自己的过滤器?例如,添加我的自定义StopFilter,ShingleFilter等。

我想已经使用了一些令牌流过滤器,因为Hello,hello和HELLO被转换为" hello"。

public class CountWordsExample {
public static void main(String[] args) throws IOException {
    RAMDirectory directory = new RAMDirectory();
    IndexWriter writer = new IndexWriter(directory, new IndexWriterConfig(
            Version.LUCENE_47, new StandardAnalyzer(Version.LUCENE_47)));
    Document document = new Document();
    document.add(new TextField("foo", "Hello hello how are you", Store.YES));
    document.add(new TextField("foo", "hello how are you", Store.YES));
    document.add(new TextField("foo", "HELLO", Store.YES));
    writer.addDocument(document);
    writer.commit();
    writer.close(true);

    //  ShingleFilter shingle = new ShingleFilter(input);

    IndexReader indexReader = DirectoryReader.open(directory);

    Bits liveDocs = MultiFields.getLiveDocs(indexReader);
    Fields fields = MultiFields.getFields(indexReader);
    for (String field : fields) {
        TermsEnum termEnum = MultiFields.getTerms(indexReader, field)
                .iterator(null);
        BytesRef bytesRef;
        while ((bytesRef = termEnum.next()) != null) {
            if (termEnum.seekExact(bytesRef)) {

                DocsEnum docsEnum = termEnum.docs(liveDocs, null);

                if (docsEnum != null) {
                    int doc;
                    while ((doc = docsEnum.nextDoc()) != DocIdSetIterator.NO_MORE_DOCS) {
                        System.out
                                .println(bytesRef.utf8ToString()
                                        + " in doc " + doc + ": "
                                        + docsEnum.freq());
                    }
                }
            }
        }
    }
    for (String field : fields) {
        TermsEnum termEnum = MultiFields.getTerms(indexReader, field)
                .iterator(null);
        BytesRef bytesRef;
        while ((bytesRef = termEnum.next()) != null) {
            int freq = indexReader.docFreq(new Term(field, bytesRef));

            System.out.println(bytesRef.utf8ToString() + " in " + freq
                    + " documents");

        }
    }
}

}

输出:

hello in doc 0: 4
how in doc 0: 2
you in doc 0: 2
hello in 1 documents
how in 1 documents
you in 1 documents

1 个答案:

答案 0 :(得分:-1)

所以答案很简单。如何定义自己的令牌处理的方法是定义我自己的分析器。例如:

import java.io.Reader;

import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.TokenStream;
import org.apache.lucene.analysis.Tokenizer;
import org.apache.lucene.analysis.core.LowerCaseFilter;
import org.apache.lucene.analysis.core.WhitespaceTokenizer;
import org.apache.lucene.analysis.standard.StandardTokenizer;
import org.apache.lucene.util.Version;

public class NGramAnalyzer extends Analyzer {


    @Override
    protected TokenStreamComponents createComponents(String fieldName,
            Reader reader) {
        TokenStream f = new StandardTokenizer(Version.LUCENE_47, reader);
        f = new LowerCaseFilter(Version.LUCENE_47, f); 

        Tokenizer source = new StandardTokenizer(Version.LUCENE_47, reader);
        return new TokenStreamComponents(source, f);
    }
}