我希望根据一列中的匹配对数据进行子集,而使用data.table
,J()
和!J()
函数与其他列不匹配
library(data.table)
DT <- data.table(x = rep(c("a", "b", "c"), each=2000), y=c(rep(c(1,3,6), each = 1)) , key = c("x", "y"))
我希望J()
和!J()
函数提供与以下代码相同的结果:
DT[J("b")][y !=1]
我尝试了以下操作,但它出现了以下错误:
DT[J("b")][!J(x, 1)]
Error in vecseq(f__, len__, if (allow.cartesian) NULL else as.integer(max(nrow(x), :
Join results in 1920000 rows; more than 4800 = max(nrow(x),nrow(i)). Check for duplicate key values in i, each of which join to the same group in x over and over again. If that's ok, try including `j` and dropping `by` (by-without-by) so that j runs for each group to avoid the large allocation. If you are sure you wish to proceed, rerun with allow.cartesian=TRUE. Otherwise, please search for this error message in the FAQ, Wiki, Stack Overflow and datatable-help for advice.
我尝试了下面的代码,但它没有消除第二个不包含1
的条件
DT[J("b")][!J("1")]
答案 0 :(得分:3)
这个答案来自Arun。所有的功劳归功于Arun
library(data.table)
DT <- data.table(x = rep(c("a", "b", "c"), each=2000), y=c(rep(c(1,3,6), each = 1)) , key = c("x", "y"))
DT["b"][!J(unique(x), 1)]
此子集基于匹配列b
中包含x
的所有行,并且在列1
的所有行中与y
不匹配。